8.直線$\left\{\begin{array}{l}x=3+tsin25°\\ y=-tcos25°\end{array}\right.$(t是參數(shù))的傾斜角是( 。
A.25°B.115°C.65°D.155°

分析 由直線方程,消去參數(shù)t化為y=-tan65°(x-3),即可得出.

解答 解:直線$\left\{\begin{array}{l}x=3+tsin25°\\ y=-tcos25°\end{array}\right.$,
消去參數(shù)t化為y=-tan65°(x-3),
∴直線的傾斜角為180°-65°=115°.
故選:B.

點評 本題考查了直線的參數(shù)方程、傾斜角與斜率的關(guān)系,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合P={x|x≥1},集合Q={y|a≤y<4},且Q⊆P,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)y=$\frac{\sqrt{3x+2}}{{x}^{2}-1}$的定義域為{x|x$≥-\frac{2}{3}$且x≠1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=ax+$\frac{4}{x}$.
(1)從區(qū)間(-2,2)內(nèi)任取一個實數(shù)a,設(shè)事件A={函數(shù)y=f(x)-2在區(qū)間(0,+∞)上有兩個不同的零點},求事件A發(fā)生的概率;
(2)當a>0,x>0時,f(x)=ax+$\frac{4}{x}≥4\sqrt{a}$.若連續(xù)擲兩次骰子(骰子六個面上標注的點數(shù)分別為1,2,3,4,5,6)得到的點數(shù)分別為a和b,記事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.集合A={x|-x2+2x+3>0},B={x|$\frac{x-2}{x}$≥0},則A∩B=( 。
A.{x|-x<x<3}B.{x|x<0或x≥2}C.{x|-1<x<0}D.{x|-1<x<0或2≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知x1=1-i(i為虛數(shù)單位)是關(guān)于x的實系數(shù)一元二次方程x2+ax+b=0的一個根,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.證明1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*),假設(shè)n=k時成立,當n=k+1時,左端增加的項數(shù)是2k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.平行四邊形OADB的對角線交點為C,$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,用$\overrightarrow{a}$、$\overrightarrow$表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設(shè)等差數(shù)列{an}的前n項和公式是Sn=5n2+3n,求
(1)a1,a2,a3;           
(2){an}的通項公式.

查看答案和解析>>

同步練習冊答案