【題目】設、分別是橢圓C:的左、右焦點,,直線1過且垂直于x軸,交橢圓C于A、B兩點,連接A、B、,所組成的三角形為等邊三角形。
(1)求橢圓C的方程;
(2)過右焦點的直線m與橢圓C相交于M、N兩點,試問:橢圓C上是否存在點P,使成立?若存在,求出點P的坐標;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】給定橢圓>>0,稱圓心在原點,半徑為的圓是橢圓的“準圓”.若橢圓的一個焦點為,其短軸上的一個端點到的距離為.
(1)求橢圓的方程和其“準圓”方程;
(2)點是橢圓的“準圓”上的一個動點,過點作直線,使得與橢圓都只有一個交點.求證:⊥.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等腰梯形MNCD中,MD∥NC,MN=MD=2,∠CDM=60°,E為線段MD上一點,且ME=3,以EC為折痕將四邊形MNCE折起,使MN到達AB的位置,且AE⊥DC
(1)求證:DE⊥平面ABCE;
(2)求點A到平面DBE的距離
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:=2px經(jīng)過點(1,2).過點Q(0,1)的直線l與拋物線C有兩個不同的交點A,B,且直線PA交y軸于M,直線PB交y軸于N.
(Ⅰ)求直線l的斜率的取值范圍;
(Ⅱ)設O為原點,,,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A市某機構(gòu)為了調(diào)查該市市民對我國申辦2034年足球世界杯的態(tài)度,隨機選取了140位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合計 | 70 | 140 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)若在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,求從這5人中隨機抽取3人至多有1人是教師的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的焦點為,橢圓的中心在原點,為其右焦點,點為曲線和在第一象限的交點,且.
(1)求橢圓的標準方程;
(2)設為拋物線上的兩個動點,且使得線段的中點在直線上,
為定點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年12月18日上午10時,在人民大會堂舉行了慶祝改革開放40周年大會.40年眾志成城,40年砥礪奮進,40年春風化雨,中國人民用雙手書寫了國家和民族發(fā)展的壯麗史詩.會后,央視媒體平臺,收到了來自全國各地的紀念改革開放40年變化的老照片,并從眾多照片中抽取了100張照片參加“改革開放40年圖片展”,其作者年齡集中在之間,根據(jù)統(tǒng)計結(jié)果,做出頻率分布直方圖如下:
(Ⅰ)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(Ⅱ)由頻率分布直方圖可以認為,作者年齡X服從正態(tài)分布,其中近似為樣本平
均數(shù),近似為樣本方差.
(i)利用該正態(tài)分布,求;
(ii)央視媒體平臺從年齡在和的作者中,按照分層抽樣的方法,抽出了7人參加“紀念改革開放40年圖片展”表彰大會,現(xiàn)要從中選出3人作為代表發(fā)言,設這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學期望.附:,若,則,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com