下列結(jié)論中正確的是( )
A.平行于平面內(nèi)兩條直線的平面,一定平行于這個平面 |
B.一條直線平行于一個平面內(nèi)的無數(shù)條直線,則這條直線與該平面平行 |
C.兩個平面分別與第三個平面相交,若交線平行則兩平面平行 |
D.在兩個平行平面中,一平面內(nèi)的一條直線必平行于另一個平面 |
試題分析:A中如果兩條直線平行,則顯然不正確;B中如果這條直線在平面內(nèi),也符合它平行于平面內(nèi)的無數(shù)條直線,但是顯然這條直線不與該平面平行;C顯然不正確;根據(jù)面面平行的性質(zhì)知D正確.
點評:考查空間中直線、平面的位置關(guān)系,要發(fā)揮空間想象能力,更要緊扣判定定理和性質(zhì)定理,定理中的條件缺一不可.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知正四棱錐S-ABCD的側(cè)棱長與底面邊長都相等,E是SB的中點,則AE,SD所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題15分)如圖,在四棱錐
中,
底面
,
,
,
,
,
是
的中點。
(Ⅰ)證明:
;
(Ⅱ)證明:
平面
;
(Ⅲ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)
如圖,已知三棱錐
O-
ABC的側(cè)棱
OA,
OB,
OC兩兩垂直,且
OA=2,
OB=3,
OC=4,
E是
OC的中點.
(1)求異面直線
BE與
AC所成角的余弦值;
(2)求二面角
A-
BE-
C的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示的三棱錐A-BCD中,∠BAD=90°,AD⊥BC,AD=4,AB=AC=2
,∠BAC=120°,若點P為△ABC內(nèi)的動點滿足直線DP與平面ABC所成角的正切值為2,則點P在△ABC內(nèi)所成的軌跡的長度為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
下列命題:①已知直線
,若
,則
∥
;②
是異面直線,
是異面直線,則
不一定是異面直線;③過空間任一點,有且僅有一條直線和已知平面
垂直;④平面
//平面
,點
,直線
//
,則
;其中正確的命題的個數(shù)有( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
設(shè)
為兩兩不重合的平面,
為兩兩不重合的直線,給出下列四個命題:
①若
,
,則
;
②若
,
,則
;
③若
,
,
,
,則
;
④若
,
,
,
,則
。
其中命題正確的是
.(填序號)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(如圖),具有公共
軸的兩個直角坐標平面
和
所成的二面角
等于
.已知
內(nèi)的曲線
的方程是
,求曲線
在
內(nèi)的射影的曲線方程。
查看答案和解析>>