已知函數(shù)f(x)=x2-mx+m-1.若函數(shù)y=|f(x)|在(1,2)上單調(diào)遞增,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:分判別式大于或等于0以及判別式小于0兩種情況討論,然后數(shù)形結(jié)合解決問(wèn)題.
解答: 解:易知△=m2-4(m-1)=m2-4m+4=(m-2)2,
①當(dāng)△=0時(shí),m=2,此時(shí)f(x)=x2-2x+1=(x-1)2,顯然該函數(shù)在(1,2)上遞增.
②當(dāng)△>0,即m≠2時(shí),f(x)=(x-1)[x-(m-1)].對(duì)稱(chēng)軸為x=
m
2

若m-1>1,則m>2,此時(shí)需
m
2
≥2,所以m≥4.
若m-1≤1時(shí),即m≤2時(shí),顯然滿足題意.


綜上,m的取值范圍是(-∞,2]∪[4,+∞).
故答案為(-∞,2]∪[4,+∞)
點(diǎn)評(píng):本題考查了利用函數(shù)思想、數(shù)形結(jié)合思想來(lái)研究函數(shù)的單調(diào)性的問(wèn)題.要注意分情況討論.分類(lèi)合理,不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,tan
A+B
2
=2sinC,若AB=1,則
1
2
AC+BC的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①非零向量
a
,
b
滿足|
a
+
b
|=|
a
-
b
|,則
a
,
b
的夾角為90°;
a
b
>0是向量
a
,
b
的夾角為銳角的充要條件;
③將函數(shù)y=sin(2x-
π
3
)的圖象按向量
a
=(-
π
6
,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式為y=sin2x.
其中正確的命題編號(hào)是( 。
A、②③B、①②C、①③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式2x-1≥5的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠ACB=90°,AC=BC=2,點(diǎn)P是AB上的一個(gè)三等分點(diǎn),則
CP
CB
+
CP
CA
=(  )
A、4B、1C、0D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2-(2a2-1)x-2a(a∈R),設(shè)不等式f(x)>0的解集為A,又知B={x|1<x<3},A∩B≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:存在x∈[1,4]使得ax2-4ax+4=0成立.命題q:對(duì)于任意x∈R,函數(shù)f(x)=lg(ax2-ax+4)恒有意義.
(1)若¬p是真命題,求實(shí)數(shù)a的取值范圍;
(2)若p∨q是真命題,若p∧q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且an=1-Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=n•an,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:
1
2
≤Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
6
-
y2
m
=1的焦距為14,則實(shí)數(shù)m=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案