已知冪函數(shù)f(x)的定義域是(-∞,0)∪(0,+∞),且它的圖象關于y軸對稱,寫出一個滿足要求的冪函數(shù)f(x)
考點:冪函數(shù)的性質
專題:函數(shù)的性質及應用
分析:取冪函數(shù)f(x)=
1
x2
滿足條件.
解答: 解:冪函數(shù)f(x)=
1
x2
的定義域是(-∞,0)∪(0,+∞),且它的圖象關于y軸對稱.
點評:本題考查了冪函數(shù)的性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知正方形的邊長為2
5
,中心為(-3,-4),一邊與直線2x+y+3=0平行,求正方形的各邊所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=x+yi(x,y∈R),滿足|z-2-2i|=|z|,求3x+3y最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中所有正確的說法的序號是
 

①“?x∈R,使2x>3”的否定是“?x∈R,使2x≤3”;
②把函數(shù)y=sin2x圖象上所有點向右平移
π
3
個單位得到y(tǒng)=sin(2x-
π
3
)的圖象;
③“4<k<6”是“方程
x2
6-k
+
y2
k-4
=1表示橢圓”的必要不充分條件;
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),當x>0時的解析式是f(x)=2x,則x<0時的解析式為f(x)=-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠A、∠B、∠C是三角形的三個內角,求證:
(1)cos(2A+B+C)=-cosA;
(2)tan
A+B
4
=-tan
3π+C
4
(提示:∠A+∠B+∠C=π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項an=
2n-5
2n
(n∈N*),則an取最大值時的n為(  )
A、4B、12C、13D、不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知lgx+lgy=1,求:
(1)
1
x2
+
1
y2
的最小值;
(2)
1
x
+
1
y
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在橫放得四棱錐E-ABCD中,底面ABCD是正方形,∠DAE=90°,且△ABE是等腰直角三角形,其中∠BAE=90°,連接AC、BD交于點O.
(1)求證:BD⊥平面AEC;
(2)若二面角A-BD-E的大小為60°,且直線EC與平面ABCD所成的角為θ,求sinθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的中心為O,右焦點為F、右頂點為A,直線x=
a2
c
與x軸的交點為K,則
|FA|
|OK|
的最大值為( 。
A、
1
2
B、
1
3
C、
1
4
D、1

查看答案和解析>>

同步練習冊答案