【題目】在一個不透明的口袋中裝有大小、形狀完全相同的個小球,將它們分別編號為,,,…,,甲、乙、丙三人從口袋中依次各抽出個小球.甲說:我抽到了編號為的小球,乙說:我抽到了編號為的小球,丙說:我沒有抽到編號為的小球.已知甲、乙、丙三人抽到的個小球的編號之和都相等,且甲、乙、丙三人的說法都正確,則丙抽到的個小球的編號分別為________________.
【答案】,,.
【解析】
利用等差數(shù)列求和公式求出所有球的編號的和,得到每個人抽出三個球的編號和,可得甲抽到的另外兩個小球的編號和為6,乙抽到的另外兩個小球的編號和為7,分類討論,排除、驗證即可得結果.
因為甲、乙、丙三人抽到的個小球的編號之和都相等,所以每個人抽到的個小球的編號之和為.設甲抽到的另外兩個小球的編號分別為,,乙抽到的另外兩個小球的編號分別為,,則,,所以,的取值只有與,與兩種情況.當甲抽到編號為與的小球時,由可知乙抽到編號為與的小球,與丙沒有抽到編號為的小球矛盾,所以甲抽到編號為與的小球,由可知乙抽到編號為與6的小球,則丙抽到的個小球的編號分別為,,,故答案為,,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC,O,M分別為AB,VA的中點.
(1)求證:VB∥平面MOC;
(2)求證:平面MOC⊥平面VAB;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,平面.
(1)證明:平面;
(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)空間四邊形的對角線,,、分別為、的中點,,求異面直線與所成的角;
(2)如圖,四棱柱中,底面是正方形,側棱底面,為的中點.求證:平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個口袋中裝有n個紅球(n≥1且n∈N+)和2個白球,從中有放回地連續(xù)摸三次,每次摸出2個球,若2個球顏色不同則為中獎,否則不中獎.
(1)當n=3時,設三次摸球中中獎的次數(shù)為X,求隨機變量X的分布列;
(2)記三次摸球中恰有兩次中獎的概率為P,求當n取多少時,P的值最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】基于移動網(wǎng)絡技術的共享單車被稱為“新四大發(fā)明”之一,短時間內(nèi)就風靡全國,給人們帶來新的出行體驗,某共享單車運營公司的市場研究人員為了了解公司的經(jīng)營狀況,對公司最近6個月的市場占有率進行了統(tǒng)計,結果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)請用相關系數(shù)說明能否用線性回歸模型擬合與月份代碼之間的關系.如果能,請計算出關于的線性回歸方程,如果不能,請說明理由;
(2)根據(jù)調(diào)研數(shù)據(jù),公司決定再采購一批單車擴大市場,從成本1000元/輛的型車和800元/輛的型車中選購一種,兩款單車使用壽命頻數(shù)如下表:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
經(jīng)測算,平均每輛單車每年能為公司帶來500元的收入,不考慮除采購成本以外的其它成本,假設每輛單車的使用壽命都是整數(shù)年,用頻率估計每輛車使用壽命的概率,以平均每輛單車所產(chǎn)生的利潤的估計值為決策依據(jù),如果你是公司負責人,會選擇哪款車型?
參考數(shù)據(jù):,,,.
參考公式:相關系數(shù),,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點分別為,離心率為,過的直線與橢圓交于兩點,且的周長為
(1)求橢圓的方程;
(2)若直線與橢圓分別交于兩點,且,試問點到直線的距離是否為定值,證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場調(diào)查,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的平方根成正比,其關系如圖2(注:單位是萬元).
圖1 圖2
(1)若A、B兩種產(chǎn)品的利潤表示為投資的函數(shù)分別為、,求出它們的表達式并注明定義域;
(2)現(xiàn)企業(yè)有20萬元資金全部投入A、B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這20萬元資金,能使獲得的利潤最大,其最大利潤是多少萬元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com