3、已知直線m⊥平面α,直線n?平面β,下面有三個命題:
①α∥β?m⊥n;②α⊥β?m∥n;③m∥n?α⊥β;則真命題的個數(shù)為( 。
分析:由兩平行平面中的一個和已知直線垂直,可得另一平面也和已知直線垂直故有直線m⊥平面β,又直線n?平面β,所以有m⊥n,故①為真命題;
由直線m⊥平面α和α⊥β,可得直線m∥β或直線m?β,當(dāng)直線m∥β時,m和n可以平行,也可以異面,不一定m∥n,故②為假命題;
由兩平行線中的一條和已知平面垂直得另一條也和平面垂直,可得n⊥β,又直線n?平面β,所以α⊥β,故 ③為真命題.
解答:解:對于①,由α∥β和直線m⊥平面α,可得直線m⊥平面β,又直線n?平面β,所以有m⊥n,故①為真命題;
對于②,由直線m⊥平面α和α⊥β,可得直線m∥β或直線m?β,當(dāng)直線m∥β時,m和n可以平行,也可以異面,故②為假命題;
對于③,由直線m⊥平面α和m∥n,可得n⊥β,又直線n?平面β,所以α⊥β,故 ③為真命題.
故真命題有兩個:①③.
故選C.
點(diǎn)評:本題是對空間中直線和平面的位置關(guān)系以及平面和平面的位置關(guān)系的綜合考查.考查課本上的基礎(chǔ)知識,所以在做題時,一定要注重對課本定義,定理的理解和掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、已知直線m?平面α,直線n?平面α,“直線c⊥m,直線c⊥n”是“直線c⊥平面α”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、已知直線m⊥平面α,直線n?平面β,下列說法正確的有( 。
①若α∥β,則m⊥n②若α⊥β,則m∥n
③若m∥n,則α⊥β④若m⊥n,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、已知直線m⊥平面α,直線n在平面β內(nèi),給出下列四個命題:①α∥β?m⊥n;②α⊥β?m∥n;③m⊥n?α∥β;④m∥n?α⊥β,其中真命題的序號是
①,④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4、已知直線m⊥平面α,直線n?平面β,則下列命題正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案