4.若二次函數(shù)y=f(x)在x=2處取最大值,則(  )
A.f(x-2)一定為奇函數(shù)B.f(x-2)一定為偶函數(shù)
C.f(x+2)一定為奇函數(shù)D.f(x+2)一定為偶函數(shù)

分析 根據(jù)函數(shù)圖象的平移規(guī)律得出f(x+2),f(x-2)的對(duì)稱軸,

解答 解:∵f(x)在x=2處取得最大值,
∴f(x)的對(duì)稱軸為x=2,
∴f(x+2)的對(duì)稱軸為y軸,f(x-2)的對(duì)稱軸為x=4.
∴f(x+2)是偶函數(shù),f(x-2)為非奇非偶函數(shù).
故選:D.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),函數(shù)圖象的變換,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,一個(gè)6×5的矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA=PE=5.
(1)證明:BC⊥PB;
(2)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法正確的是(  )
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要條件
C.“若tanα≠$\sqrt{3}$,則$α≠\frac{π}{3}$”是真命題
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{lnx}{x}-1$.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)m>0,若函數(shù)g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列求導(dǎo)運(yùn)算正確的是(  )
A.${({\frac{1}{x}})^′}=\frac{1}{x^2}$B.${({log_2}x)^’}=\frac{1}{xln2}$
C.(3x)′=3xlog3eD.${({\frac{e^x}{x}})^′}=\frac{{x{e^x}+{e^x}}}{x^2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{{{{log}_3}({x+1})}}{x+1}({x>0})$的圖象上有一點(diǎn)列Pn(xn,yn)(n∈N*),點(diǎn)Pn在x軸上的射影是Qn(xn,0),且xn=3xn-1+2(n≥2且n∈N*),x1=2.
(1)求證:{xn+1}是等比數(shù)列,并求出數(shù)列{xn}的通項(xiàng)公式;
(2)對(duì)任意的正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式$3{t^2}-6mt+\frac{1}{3}>{y_n}$恒成立,求實(shí)數(shù)t的取值范圍;
(3)設(shè)四邊形PnQnQn+1Pn+1的表面積是Sn,求證:$\frac{1}{S_1}+\frac{1}{{2{S_2}}}+…+\frac{1}{{n{S_n}}}<3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{4,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$若函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A.(-2,1)B.(1,2)C.[-2,1]D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知三角形ABC中,角A,B,C成等差數(shù)列,且$2sinCcosA+\sqrt{3}sinA=2sinB,AD$為角A的內(nèi)角平分線,$AD=\sqrt{6}$.
(1)求三角形內(nèi)角C的大;
(2)求△ABC面積的S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知冪函數(shù)f(x)=${x^{-{m^2}-2m+3}}$(m∈Z)為偶函數(shù),且在區(qū)間(-∞,0)上是單調(diào)減函數(shù),則$f({\frac{1}{2}})$的值為$\frac{1}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案