已知為橢圓上的三個點,為坐標(biāo)原點.
(1)若所在的直線方程為,求的長;
(2)設(shè)為線段上一點,且,當(dāng)中點恰為點時,判斷的面積是否為常數(shù),并說明理由.
(1);(2)定值為

試題分析:(1)因為求所在的直線方程為與橢圓方程相交所得的弦長.一般是通過聯(lián)立兩方程,消去y,得到關(guān)于x的一元二次方程,可以解得兩個交點的坐標(biāo)的橫坐標(biāo),確定點的坐標(biāo),從而根據(jù)兩點的距離公式求出弦長.
(2)直線與圓的位置關(guān)系,首先考慮直線的斜率是否存在,做好分類的工作.若當(dāng)斜率存在時,通過聯(lián)立方程,應(yīng)用韋達定理知識,求出弦長,利用點到直線的距離公式求出三角形的高的長.從而寫出三角形的面積(含斜率的等式).再根據(jù)的關(guān)系求出點P的坐標(biāo),帶到橢圓方程中,即可求出含斜率的一個等式,從而可得結(jié)論.
試題解析:(1)由  得
解得,
所以兩點的坐標(biāo)為所以.
(2)①若是橢圓的右頂點(左頂點一樣),則,
因為在線段上,所以,求得,
所以的面積等于.
②若B不是橢圓的左、右頂點,設(shè),
 得
,,
所以,的中點的坐標(biāo)為
所以,代入橢圓方程,化簡得.
計算.
因為點的距離 
所以,的面積.
綜上,面積為常數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓過點,離心率為.
(1)求橢圓的方程;
(2)求過點且斜率為的直線被橢圓所截得線段的中點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓C的中心在原點,焦點在x軸上,離心率為,且過點,點A、B分別是橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.

(1)求橢圓C的方程;
(2)求點P的坐標(biāo);
(3)設(shè)M是直角三角PAF的外接圓圓心,求橢圓C上的點到點M的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1,k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點P(0,-1)是橢圓C1=1(a>b>0)的一個頂點,C1的長軸是圓C2x2y2=4的直徑.l1,l2是過點P且互相垂直的兩條直線,其中l1交圓C2A,B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積取最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線左焦點且傾斜角為的直線交雙曲線右支于點,若線段的中點落在軸上,則此雙曲線的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若θ是任意實數(shù),則方程x2+4y2=1所表示的曲線一定不是 (   )
A.圓B.雙曲線C.直線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點的雙曲線的漸近線方程為為雙曲線右支上一點,為雙曲線的左焦點,點的最小值為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓的圓心為拋物線的焦點,直線與圓相切,則該圓的方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案