9.已知函數(shù)f(x)=x3+ax2+3x-9.
(1)若函數(shù)f(x)在x=-3時取得極值,求函數(shù)f(x)在點(0,f(0))處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,求實數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)f′(-3)=0,求出a的值,從而求出切線方程即可;
(2)問題轉(zhuǎn)化為a≤-$\frac{3}{2}$(x+$\frac{1}{x}$)在[1,2]恒成立,令h(x)=-$\frac{3}{2}$(x+$\frac{1}{x}$),x∈[1,2],求出h(x)的最小值,從而求出a的范圍即可.

解答 解:(1)f′(x)=3x2+2ax+3,
f′(-3)=30-6a=0,解得:a=5,
∴f(x)=x3+5x2+3x-9,
f′(x)=3x2+10x+3,
f′(0)=3,f(0)=-9,
故切線方程是:y+9=3(x-0),
即3x-y-9=0;…(6分)
(2)若函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,
則f′(x)=3x2+2ax+3≤0在[1,2]恒成立,
即a≤-$\frac{3}{2}$(x+$\frac{1}{x}$)在[1,2]恒成立,
令h(x)=-$\frac{3}{2}$(x+$\frac{1}{x}$),x∈[1,2],
h′(x)=-$\frac{3(x-1)(x+1)}{{2x}^{2}}$<0在[1,2]恒成立,
∴h(x)在[1,2]遞減,
h(x)min=h(2)=-$\frac{15}{4}$,
∴a≤-$\frac{15}{4}$.…(12分)

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及切線方程問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若(ax-1)9=a0+a1x+a2x2+…+a9x9,且a0+a1+a2+…+a9=0,則a3=84.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計表如表:
日最高氣溫t(單位:℃)t≤22℃22℃<t≤28℃28℃<t≤32℃t>32℃
天數(shù)612XY
由于工作疏忽,統(tǒng)計表被墨水污染,Y和X數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.8.
(Ⅰ)求X,Y的值;
(Ⅱ)把日最高氣溫高于32℃稱為本地區(qū)的“高溫天氣”,根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此推測是否有95%的把握認為本地區(qū)的“高溫天氣”與冷飲“旺銷”有關(guān)?說明理由.
高溫天氣非高溫天氣合計
旺銷22224        
不旺銷426
合計62430
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.100.0500.0250.0100.0050.001
k2.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.命題:“?x>0,x2-x≥0”的否定形式是( 。
A.?x≤0,x2-x>0B.?x>0,x2-x≤0C.?x≤0,x2-x>0D.?x>0,x2-x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求圓心在l1:y-3x=0上,與x軸相切,且被直線l2:x-y=0截得弦長為$2\sqrt{7}$的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.計算下列式子的值:
(1)$lg8+lg125-{(\frac{1}{7})^{-2}}+{16^{\frac{3}{4}}}+{(\sqrt{3}-1)^0}$;
(2)$sin\frac{25π}{6}+cos\frac{25π}{3}+tan(-\frac{25π}{4})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$A={60°},b=4,{S_{△ABC}}=4\sqrt{3}$,則a=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知點P在曲線C上,P到F(1,0)的距離比它到直線l:x+2=0的距離小1,直線y=x-2與曲線C交于A,B兩點.
(1)求弦AB的長度;
(2)若點P在第一象限,且△ABP面積為$2\sqrt{3}$,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.f(x)=Asin(ωx+ωπ)(A>0,ω>0)在$[{-\frac{3π}{2},-\frac{3π}{4}}]$上單調(diào),則ω的最大值為(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{4}{3}$

查看答案和解析>>

同步練習(xí)冊答案