若函數(shù)f(3x+2)=3x+x+2,則f(3)的值是( 。
A.3B.6C.17D.32
∵f(3x+2)=3x+x+2,
∴令3x+2=3,則x=0,
∴f(3)=30+0+2=3.
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的偶函數(shù)的部分圖像如右圖所示,則在上,下列函數(shù)中與的單調(diào)性不同的是(     )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)的定義域為[-3,+∞),且f(6)=f(-3)=2.f′(x)為f(x)的導(dǎo)函數(shù),f′(x)的圖象如圖所示.若正數(shù)a,b滿足f(2a+b)<2,則
b+3
a-2
的取值范圍是( 。
A.(-
3
2
,3)
B.(-∞,-
3
2
)∪(3,+∞)
C.(-
9
2
,3)
D.(-∞,-
9
2
)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正整數(shù)12分解成兩個正整數(shù)的乘積有:1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對值最小的,我們稱3×4為12的最佳分解,當(dāng)p×q(p≤q且p、q∈N*)是正整數(shù)n的最佳分解時,我們規(guī)定函數(shù)f(n)=
p
q
,例如f(12)=
3
4
,關(guān)于函數(shù)f(n)有下列敘述:
①f(1)=
1
7

②f(24)=
3
8

③f(28)=
4
7

④f(144)=
9
16

其中正確的序號為______(填入所有正確的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)a>0且a≠1,若函數(shù)f(x)=loga(ax2-x)在區(qū)間[
1
2
,6]
上是增函數(shù),則a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)與g(x)的定義域均為非負(fù)實數(shù)集,對任意x≥0,規(guī)定f(x)*g(x)=minf(x),g(x),若f(x)=3-x,g(x)=
2x+5
,則f(x)*g(x)的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司試銷一種成本單價為500元的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元.試問銷售單價定為多少時,該公司可獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=4x2-4ax+a2-2a+2在區(qū)間[0,2]上有最小值3,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)是R上的減函數(shù),若f(m-1)>f(2m+1),則實數(shù)m的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊答案