【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A1,A2,…,An,…B1,B2,…,Bn,…均在拋物線x=y2上,線段AnBnx軸的交點(diǎn)為Hn.將△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面積分別記為S1,S2,…,Sn+1,….已知上述三角形均為等腰直角三角形,且它們的頂角分別為O,H1,…,Hn,….

1)求S1S2的值;

2)證明:nsnn2.

【答案】1,.2)答案見(jiàn)解析

【解析】

1)由OA1:y=xx=y2聯(lián)立可得S1=1, 由H1A2:y=x1x=y2聯(lián)立可得S2=;(2)設(shè)A1,A2,…,An,…的縱坐標(biāo)為x1,x2,…,xn,…,求得xn+1,再利用數(shù)學(xué)歸納法證明nSnn2.

1)由OA1:y=xx=y2聯(lián)立可得x=01,故A1(1,1),即S1=1,

H1A2:y=x1x=y2聯(lián)立可得x,

A2(,),

因此S2=()2;

2)設(shè)A1,A2,…,An,…的縱坐標(biāo)為x1,x2,…,xn,…,

可得Sn=xn2,且HnAn+1:y=x(xn+xn1+…+x1),

x=y2聯(lián)立可得xn+1=xn+12(xn+xn1+…+x1),即=xn+12,

=xn+12,與=xn2,相減可得xn+1=xn+12xn2,

進(jìn)而解得xn+1,

下面運(yùn)用數(shù)學(xué)歸納法證明nSnn2.

當(dāng)x=1,2時(shí),S1=1,S2=,符合題意;

當(dāng)n=k時(shí),假設(shè)xkk成立,

一方面,xk+1

0,即有xk+1;

另一方面,xk+1(k+1)(k+1)

(k)0,即有xk+1k+1.

可得n=k+1時(shí),xk+1k+1.

因此xnn,即nSnn2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題:其中所有假命題的序號(hào)是_______.

①命題的否定是,

②將函數(shù)的圖像向右平移個(gè)單位,得到函數(shù)的圖像;

③冪函數(shù)上是減函數(shù),則實(shí)數(shù)

④函數(shù)有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

1求橢圓的標(biāo)準(zhǔn)方程;

2若點(diǎn)與點(diǎn)均在橢圓上,且關(guān)于原點(diǎn)對(duì)稱,問(wèn):橢圓上是否存在點(diǎn)點(diǎn)在一象限,使得為等邊三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),令

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠打算設(shè)計(jì)一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長(zhǎng)為x米的正方形,假設(shè)該容器的底面及側(cè)壁的厚度均可忽略不計(jì).

1)請(qǐng)你確定x的值,使得該容器的外表面積最小;

2)若該容器全部由某種每平方米價(jià)格為100元的材料做成,且制作該容器僅需將購(gòu)置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側(cè)面(假設(shè)這一過(guò)程中產(chǎn)生的費(fèi)用和材料損耗可忽略不計(jì)),再將這些上下底面和側(cè)面的邊緣進(jìn)行焊接即可做成該容器,焊接費(fèi)用是每米500元,試確定x的值,使得生產(chǎn)每個(gè)該種容器的成本(即原料購(gòu)置成本+焊接費(fèi)用)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍

2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型歌手選秀活動(dòng),過(guò)程分為初賽、復(fù)賽和決賽.經(jīng)初賽進(jìn)入復(fù)賽的40名選手被平均分成甲、乙兩個(gè)班,由組委會(huì)聘請(qǐng)兩位導(dǎo)師各負(fù)責(zé)一個(gè)班進(jìn)行聲樂(lè)培訓(xùn).下圖是根據(jù)這40名選手參加復(fù)賽時(shí)獲得的100名大眾評(píng)審的支持票數(shù)制成的莖葉圖.賽制規(guī)定:參加復(fù)賽的40名選手中,獲得的支持票數(shù)不低于85票的可進(jìn)入決賽,其中票數(shù)不低于95票的選手在決賽時(shí)擁有優(yōu)先挑戰(zhàn)權(quán)”.

1)從進(jìn)入決賽的選手中隨機(jī)抽出2名,X表示其中擁有優(yōu)先挑戰(zhàn)權(quán)的人數(shù),求X的分布列和數(shù)學(xué)期望;

2)請(qǐng)?zhí)顚?xiě)下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為進(jìn)入決賽與選擇的導(dǎo)師有關(guān)?

甲班

乙班

合計(jì)

進(jìn)入決賽

未進(jìn)入決賽

合計(jì)

下面的臨界值表僅供參考:

P

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題;命題函數(shù)在區(qū)間上有零點(diǎn).

1)當(dāng)時(shí),若為真命題,求實(shí)數(shù)的取值范圍;

2)若命題是命題的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為更好進(jìn)行校紀(jì)、校風(fēng)管理,爭(zhēng)創(chuàng)文明學(xué)校,由志愿者組成小紅帽監(jiān)督崗,對(duì)全校的不文明行為進(jìn)行監(jiān)督管理,對(duì)有不文明行為者進(jìn)行批評(píng)教育,并作詳細(xì)的登記,以便跟蹤調(diào)查下表是個(gè)周內(nèi)不文明行為人次統(tǒng)計(jì)數(shù)據(jù):

周次

不文明行為人次

1)請(qǐng)利用所給數(shù)據(jù)求不文明人次與周次之間的回歸直線方程,并預(yù)測(cè)該學(xué)校第周的不文明人次;

2)從第周到第周記錄得知,高一年級(jí)有位同學(xué),高二年級(jí)有位同學(xué)已經(jīng)有次不文明行為.學(xué)校德育處決定先從這人中任選人進(jìn)行重點(diǎn)教育,求抽到的兩人恰好來(lái)自同一年級(jí)的概率

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案