【題目】在對樹人中學(xué)高一年級學(xué)生身高的調(diào)查中,采用樣本量比例分配的分層隨機抽樣,如果不知道樣本數(shù)據(jù),只知道抽取了男生23人,其平均數(shù)和方差分別為170.612.59,抽取了女生27人,其平均數(shù)和方差分別為160.638.62.你能由這些數(shù)據(jù)計算出總樣本的方差,并對高一年級全體學(xué)生的身高方差作出估計嗎?

【答案】能,估計為51.4862

【解析】

引入記號,把男生樣本記為,其平均數(shù)記為,方差記為;把女生樣本記為,其平均數(shù)記為,方差記為;把總樣本數(shù)據(jù)的平均數(shù)記為,方差記為.

根據(jù)方差的定義,總樣本方差為,為了與聯(lián)系,變形為,計算后可得,.這樣變形后可計算出.這也就是估計值.

把男生樣本記為,其平均數(shù)記為,方差記為;把女生樣本記為,其平均數(shù)記為,方差記為;把總樣本數(shù)據(jù)的平均數(shù)記為,方差記為.

根據(jù)方差的定義,總樣本方差為

,可得

.

同理可得

.

因此,

.

,,根據(jù)按比例分配分層隨機抽樣總樣本平均數(shù)與各層樣本平均數(shù)的關(guān)系,可得總樣本平均數(shù)為

.

把已知的男生、女生樣本平均數(shù)和方差的取值代入①,可得

.

我們可以計算出總樣本的方差為51.4862,并據(jù)此估計高一年級學(xué)生身高的總體方差為51.4862.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等腰梯形ABCD中,ABDC,AB2,BC1,∠ABC60°.動點EF分別在線段BCDC上,且

1)當(dāng)λ,求||;

2)求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過且斜率為的直線交拋物線于,兩點.若線段的垂直平分線與軸交于點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列結(jié)論:

(1)若對任意,且,都有,則為R上的減函數(shù);

(2)若為R上的偶函數(shù),且在內(nèi)是減函數(shù), ,則解集為;

(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);

(4)為常數(shù),若對任意的,都有關(guān)于對稱.

其中所有正確的結(jié)論序號為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A3,3),B5,–1)到直線l的距離相等,且直線l過點P0,1),則直線l的方程(

A.y=1B.2x+y–1=0

C.2x+y–1=02x+y+1=0D.y=12x+y–1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,平面,,點分別為中點.

(1)求證:直線平面;

(2)求證:

(3)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在試驗E“連續(xù)拋擲一枚骰子2次,觀察每次擲出的點數(shù)”中,事件A表示隨機事件“第一次擲出的點數(shù)為1”,事件表示隨機事件“第一次擲出的點數(shù)為1,第二次擲出的點數(shù)為j,事件B表示隨機事件“2次擲出的點數(shù)之和為6”,事件C表示隨機事件“第二次擲出的點數(shù)比第一次的大3”,

1)試用樣本點表示事件;

2)試判斷事件AB,ACBC是否為互斥事件;

3)試用事件表示隨機事件A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體的棱長為2,則以下四個命題中錯誤的是

A. 直線為異面直線 B. 平面

C. D. 三棱錐的體積為

查看答案和解析>>

同步練習(xí)冊答案