【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離為海里的處有一艘走私船,在處北偏西方向,距離為海里的處有一艘緝私艇奉命以海里/時的速度追截走私船,此時,走私船正以海里/時的速度從處向北偏東方向逃竄.
(1)問船與船相距多少海里?船在船的什么方向?
(2)問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時間.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中).
(1)討論的單調(diào)性;
(2)若對任意的,關(guān)于的不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓的左頂點,經(jīng)過左焦點的直線與橢圓交于, 兩點,求與的面積之差的絕對值的最大值.(為坐標原點)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點.
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°.
①證明:平面PBC⊥平面ABCD;
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓心在軸上的圓經(jīng)過兩點和,直線的方程為.
(1)求圓的方程;
(2)當時,為直線上的定點,若圓上存在唯一一點滿足,求定點的坐標;
(3)設(shè)點A,B為圓上任意兩個不同的點,若以AB為直徑的圓與直線都沒有公共點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,銷售利潤分別為2千元/件、1千元/件.甲、乙兩種產(chǎn)品都需要在兩種設(shè)備上加工,生產(chǎn)一件甲產(chǎn)品需用設(shè)備2小時, 設(shè)備6小時;生產(chǎn)一件乙產(chǎn)品需用設(shè)備3小時, 設(shè)備1小時. 兩種設(shè)備每月可使用時間數(shù)分別為480小時、960小時,若生產(chǎn)的產(chǎn)品都能及時售出,則該企業(yè)每月利潤的最大值為( )
A. 320千元 B. 360千元 C. 400千元 D. 440千元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:
學(xué)校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動是相互獨立的.
(1)若該區(qū)共2000名高中學(xué)生,估計學(xué)校參與“創(chuàng)城”活動的人數(shù);
(2)在隨機抽查的100名高中學(xué)生中,隨機抽取1名學(xué)生,求恰好該生沒有參與“創(chuàng)城”活動的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學(xué)中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com