下列幾個(gè)圖形中,可以表示函數(shù)關(guān)系f(x)的一個(gè)圖是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義以及函數(shù)和圖象之間的關(guān)系即可得到結(jié)論.
解答: 解:在A中,存在兩個(gè)函數(shù)值和x對(duì)應(yīng),不滿足函數(shù)y的唯一性,
B滿足函數(shù)的定義,
在C中,存在兩個(gè)函數(shù)值和x對(duì)應(yīng),不滿足函數(shù)y的唯一性,
在D中,存在兩個(gè)函數(shù)值和x對(duì)應(yīng),不滿足函數(shù)y的唯一性,
故選:B
點(diǎn)評(píng):本題主要考查函數(shù)圖象的判斷,根據(jù)函數(shù)的定義是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P,Q分別為x2+(y-6)2=2和橢圓
x2
16
+
y2
4
=1上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AB=AD=CD=1,BD=
2
,BD⊥CD.將四邊形ABCD沿對(duì)角線BD折成四面體A′-BCD,使平面A′BD⊥平面BCD,則下列結(jié)論正確的是( 。
A、A′C⊥BD
B、∠BA′C=90°
C、CA′與平面A′BD所成的角為30°
D、四面體A′-BCD的體積為
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x+1)=x2-5x+4,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列不等式一定成立的是( 。
A、lg(x2+
1
4
)>lgx(x>0)
B、sinx+
1
sinx
≥2(x≠kπ,k∈Z)
C、
1
x2+1
≥1
(x∈R)
D、
x2+1
2
2x
x+1
(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,A(2,4),B(1,-3),C(-2,1),則BC邊上的高AD的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2+4x-6y-3=0的圓心坐標(biāo)為( 。
A、(4,-6)
B、(2,-3)
C、(-2,3)
D、(-4,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某廠準(zhǔn)備投資100萬生產(chǎn)A,B兩種新產(chǎn)品,據(jù)測(cè)算,投產(chǎn)后的年收益,A產(chǎn)品是總投入的
1
5
,B產(chǎn)品則是總投入開平方后的2倍.問應(yīng)該怎樣分配投入數(shù),使兩種產(chǎn)品的年總收益最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
 x2+4x-12的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案