已知一系列函數(shù)有如下性質(zhì):
函數(shù)y=x+
1
x
在(0,1]上是減函數(shù),在[1,+∞)上是增函數(shù);
函數(shù)y=x+
2
x
在(0,
2
]上是減函數(shù),在[
2
,+∞)上是增函數(shù); 
函數(shù)y=x+
3
x
在(0,
3
]上是減函數(shù),在[
3
,+∞)上是增函數(shù);

利用上述所提供的信息解決問(wèn)題:
若函數(shù)y=x+
3m
x
(x>0))的值域是[6,+∞),則實(shí)數(shù)m的值是
 
考點(diǎn):歸納推理
專題:計(jì)算題,推理和證明
分析:由題意,3m=9,即可求出m的值.
解答: 解:由題意,3m=9,∴m=2,
故答案為:2
點(diǎn)評(píng):本題考查歸納推理,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M(x,y)是橢圓
x2
25
+
y2
16
=1上任意一點(diǎn),求x+y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)的圖象頂點(diǎn)為A(0,15),且圖象在x軸上截得線段長(zhǎng)為8.
(1)求函數(shù)f(x)的解析式;
(2)證明:函數(shù)f(x)在(1,+∞)上是減函數(shù)
(3)若g(x)=|f(x)|,試畫出函數(shù)g(x)的圖象(只畫草圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列函數(shù)的奇偶性.
(1)f(x)=|sinx|;
(2)f(x)=sinxcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式組:
|
2
a
|≤1
|
1
a
|>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求經(jīng)過(guò)兩直線2x-3y+1=0和3x+4y-2=0的交點(diǎn)且與直線3x-2y+4=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(0,-1)的直線l,且被兩條平行直線2x+y-6=0和4x+2y-5=0截得線段的長(zhǎng)為
7
2
,求直線l方程.(用兩直線夾角做)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在區(qū)間(-π,0)上的函數(shù)f(x)=xsinx+cosx,則f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是橢圓E:
x2
4
+
y2
2
=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn)且四邊形OABC為平行四邊形.
(1)當(dāng)點(diǎn)B是橢圓E的右頂點(diǎn),且OB⊥AC時(shí),求A點(diǎn)與C點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)B不是橢圓E的頂點(diǎn)時(shí),判斷是否存在點(diǎn)A使得OB⊥AC,若存在,求出A點(diǎn)坐標(biāo).若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案