8.已知點M(2,-3),N(-3,-2),直線l1:y=ax-a+1=0與線段MN相交,則實數(shù)a的取值范圍是( 。
A.[-4,$\frac{3}{4}$]B.(-∞,-4]∪[$\frac{3}{4}$,+∞)C.(-4,$\frac{3}{4}$]∪[4,+∞)D.[-$\frac{3}{4}$,4]

分析 直線l:y=ax-a+1與線段MN相交,可得M,N在ax-y-a+1=0的兩側(cè),或在ax-y-a+1=0上,由此可求實數(shù)a的取值范圍.

解答 解:∵直線l:y=ax-a+1與線段MN相交,
∴M,N在ax-y-a+1=0的兩側(cè),或在ax-y-a+1=0上
∵M(jìn)(2,-3),N(-3,-2),
∴(2a+3-a+1)(-3a+2-a+1)≤0
∴(a+4)(-4a+3)≤0
∴a≥$\frac{3}{4}$或a≤-4,
故選:B.

點評 本題考查直線與線段的位置關(guān)系,考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知全集U=R,集合A={x|-7≤2x-1≤7},B={x|m-1≤x≤3m-2}.若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單遞減的函數(shù)是( 。
A.y=ln$\frac{1}{|x|}$B.y=x3C.y=ln(x+$\sqrt{{x^2}+1}$)D.y=sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)在△ABC中,求證:$\frac{a}$-$\frac{a}$=c($\frac{cosB}$-$\frac{cosA}{a}$);
(2)在△ABC中,已知(a2-b2)sin(A+B)=(a2+b2)sin(A-B),判定△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)是定義在R上的偶函數(shù),在(-∞,0]上是增函數(shù),且f(3)=0,則使得f(x)>0的x的取值范圍是(  )
A.(-∞,-3)B.(3,+∞)C.(-3,3)D.(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等比數(shù)列{an}中,a1=-16,a4=2,則前4項的和S4等于( 。
A.20B.-20C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)f(x)=$\left\{\begin{array}{l}{a({x}^{2}-1)-2lnx,x≥a}\\{{e}^{x-1}+(a-2)x,x<a}\end{array}\right.$.
(1)若a=1,求f(x)的最小值;
(2)若a>1,討論f(x)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知一個正三棱柱的所有棱長均相等,其側(cè)(左)視圖如圖所示,則此三棱柱的表面積為48+8$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知f(x)=x2+ax對以任意的a∈[-2,2]都有f(x)≥3-a成立,則x的取值范圍是x$≤-1-\sqrt{2}$或x$≥1+\sqrt{6}$.

查看答案和解析>>

同步練習(xí)冊答案