已知平面,直線,且有,則下列四個(gè)命題正確的個(gè)數(shù)為(    )
①若;②若;③若;④若
A.B.C.D.
A

試題分析:正確的命題只有①,當(dāng)時(shí),由可知,,而,所以,故①為真命題;對(duì)于②,當(dāng)時(shí),有可能在平面內(nèi),故②不正確;對(duì)于③,當(dāng)時(shí),可能平行,也可能相交,還有可能異面,故③不正確;對(duì)于④,當(dāng)時(shí),可能平行,可能垂直,也可能既不平行也不垂直,故④錯(cuò)誤;綜上可知,選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=a,BC=a,以對(duì)角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點(diǎn)與P點(diǎn)重合),P點(diǎn)在平面ACD上的射影恰好落在邊AD上的H處.

(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側(cè)面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBC,OAC中點(diǎn).
 
(1)證明:A1O⊥平面ABC;
(2)若E是線段A1B上一點(diǎn),且滿足VEBCC1·VABCA1B1C1,求A1E的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P為DN的中點(diǎn).
 
(1)求證:BD⊥MC;
(2)線段AB上是否存在點(diǎn)E,使得AP∥平面NEC?若存在,說(shuō)明在什么位置,并加以證明;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐O ­ABCD中,底面ABCD為菱形,OA⊥平面ABCD,E為OA的中點(diǎn),F(xiàn)為BC的中點(diǎn),求證:(1)平面BDO⊥平面ACO;(2)EF∥平面OCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在幾何體中,點(diǎn)在平面ABC內(nèi)的正投影分別為A,B,C,且,E為中點(diǎn),

(1)求證;CE∥平面,
(2)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,在三棱錐A-BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則

(1)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH為菱形;
(2)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH是正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)l,m,n為三條不同的直線,α,β為兩個(gè)不同的平面,下列命題中正確的個(gè)數(shù)是(  )
①若l⊥α,m∥β,α⊥β,則l⊥m;
②若m?α,n?α,l⊥m,l⊥n,則l⊥α;
③若l∥m,m∥n,l⊥α,則n⊥α;
④若l∥m,m⊥α,n⊥β,α∥β,則l∥n.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線段D1E上,點(diǎn)P到直線CC1的距離的最小值為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案