將3個(gè)球隨機(jī)地放入4個(gè)杯子中,求一個(gè)杯子中球數(shù)的最大值x的概率分布.
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:由題意知X的可能取值為1,2,3,分別求出P(X=1),P(X=2),P(X=3),由此能求出一個(gè)杯子中球數(shù)的最大值x的概率分布.
解答: 解:由題意知X的可能取值為1,2,3,
P(X=1)=
A
3
4
43
=
6
16
=
3
8

P(X=2)=
C
1
4
C
2
3
•3
43
=
9
16
,
P(X=3)=
C
1
4
43
=
1
16
,
∴X的分布列為:
 X 1  2  3
P  
3
8
 
9
16
 
1
16
點(diǎn)評(píng):本題考查離散型隨機(jī)變量的分布列的求法,是中檔題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)盒子中裝有大量形狀大小一樣但重量不盡相同的小球,從中隨機(jī)抽取50個(gè)作為樣本,稱出它們的重量(單位:克),重量分組區(qū)間為(5,15],(15,25],(25,35],(35,45],由此得到樣本的重量頻率分布直方圖,如圖.
(1)求a的值;
(2)根據(jù)樣本數(shù)據(jù),試估計(jì)盒子中小球重量的平均值;
(注:設(shè)樣本數(shù)據(jù)第i組的頻率為pi,第i組區(qū)間的中點(diǎn)值為xi(i=1,2,3,…,n),則樣本數(shù)據(jù)的平均值為
.
X
=x1p1+x2p2+x3p3+…+xnpn.)
(3)從盒子中隨機(jī)抽取3個(gè)小球,其中重量在(5,15]內(nèi)的小球個(gè)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

居住在同一個(gè)小區(qū)的甲、乙、丙三位教師家離學(xué)校都較遠(yuǎn),每天早上要開車去學(xué)校上班,已知從該小區(qū)到學(xué)校有兩條路線,走線路①堵車的概率為
1
4
,不堵車的概率為
3
4
;走線路②堵車的概率為p,不堵車的概率為1-p.若甲、乙兩人走線路①,丙老師因其他原因走線路②,且三人上班是否堵車相互之間沒有影響.
(Ⅰ)若三人中恰有一人被堵的概率為
7
16
,求走線路②堵車的概率;
(Ⅱ)在(Ⅰ)的條件下,求三人中被堵的人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)上有一點(diǎn)P到它的兩個(gè)焦點(diǎn)的距離之差為8,一條漸近線的傾斜角為arctan
3
4
,設(shè)p為雙曲線上一點(diǎn),過P作一條漸近線的平行線交另一條漸近線于點(diǎn)M,求三角形OPM的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

離心率為
5
5
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線x=ky+1與C交于相異兩點(diǎn)M、N,且
OM
ON
=-
31
9
(O是坐標(biāo)原點(diǎn)),求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+|x-a|(x∈R,a為實(shí)數(shù)).
(1)討論函數(shù)f(x)的奇偶性;
(2)設(shè)a>
1
2
,求函數(shù)f(x)的最小值;
(3)設(shè)a>0,g(x)=
f(x)
x
,x∈(0,a],若g(x)在區(qū)間(0,a]上是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(a2x)•loga2(ax),當(dāng)x∈[2,4]時(shí),y的取值范圍是[-
1
8
,0],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線的方程分別為:2x-y+4=0,x-y+5=0與2mx-3y+12=0,若三條直線能圍成直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)g′(x)是函數(shù)g(x)的導(dǎo)函數(shù),且f(x)=g′(x).現(xiàn)給出以下四個(gè)命題:
①若f(x)是奇函數(shù),則g(x)必是偶函數(shù);    
②若f(x)是偶函數(shù),則g(x)必是奇函數(shù);
③若f(x)是周期函數(shù),則g(x)必是周期函數(shù);
④若f(x)是單調(diào)函數(shù),則g(x)必是單調(diào)函數(shù).
其中正確的命題是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案