【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數據(單位:℃)制成如圖所示的莖葉圖,考慮以下結論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據莖葉圖能得到的正確結論的編號為( )
A.①③
B.①④
C.②③
D.②④
【答案】C
【解析】解:由莖葉圖中的數據知,乙兩地某月11時的氣溫分別為:
甲:28,29,30,31,32
乙:26,28,29,31,31;
可得:甲地該月11時的平均氣溫為 = (28+29+30+31+32)=30,
乙地該月11時的平均氣溫為 = (26+28+29+31+31)=29,
故甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫;①錯誤,②正確;
又甲地該月11時溫度的方差為 = [(28﹣30)2+(29﹣30)2+(30﹣30)2+(31﹣30)2+(32﹣30)2]=2
乙地該月14時溫度的方差為 = [(26﹣29)2+(28﹣29)2+(29﹣29)2+(31﹣29)2+(31﹣29)2]=3.6,
故 < ,
所以甲地該月11時的氣溫標準差小于乙地該月11時的氣溫標準差,③正確,④錯誤.
綜上,正確的命題是②③.
故選:C.
【考點精析】根據題目的已知條件,利用莖葉圖的相關知識可以得到問題的答案,需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數組中的數按位數進行比較,將數的大小基本不變或變化不大的位作為一個主干(莖),將變化大的位的數作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個主干后面的幾個數,每個數具體是多少.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: 的右頂點A(2,0),且過點
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(1,0)且斜率為k1(k1≠0)的直線l于橢圓C相交于E,F(xiàn)兩點,直線AE,AF分別交直線x=3于M,N兩點,線段MN的中點為P,記直線PB的斜率為k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A、B、C為⊙O上三點,B為 的中點,P為AC延長線上一點,PQ與⊙O相切于點Q,BQ與AC相交于點D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BDQD的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】由無理數引發(fā)的數學危機一直延續(xù)到19世紀.直到1872年,德國數學家戴德金從連續(xù)性的要求出發(fā),用有理數的“分割”來定義無理數(史稱戴德金分割),并把實數理論建立在嚴格的科學基礎上,才結束了無理數被認為“無理”的時代,也結束了持續(xù)2000多年的數學史上的第一次大危機.所謂戴德金分割,是指將有理數集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,不可能成立的是( )
A. 沒有最大元素, 有一個最小元素 B. 沒有最大元素, 也沒有最小元素
C. 有一個最大元素, 有一個最小元素 D. 有一個最大元素, 沒有最小元素
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(為參數,),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的普通方程和曲線的直角坐標方程;
(2)已知點是曲線上一點,若點到曲線的最小距離為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.
(1)要使矩形的面積大于50平方米,則的長應在什么范圍?
(2)當的長為多少米時,矩形花壇的面積最小?并求出最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com