又曲線
y2
64
-
x2
36
=1上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離等于3,那么點(diǎn)P與兩個(gè)焦點(diǎn)所構(gòu)成三角形的周長(zhǎng)等于(  )
A、42B、36C、28D、26
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的a,b,c,再確定P的位置為上支上一點(diǎn),再由雙曲線的定義,即可得到所求的周長(zhǎng).
解答: 解:雙曲線
y2
64
-
x2
36
=1的a=8,b=6,則c=
64+36
=10,
設(shè)P到它的上焦點(diǎn)F的距離等于3,
由于3>c-a=2,3<c+a=18,則P為上支上一點(diǎn),
則由雙曲線的定義可得PF'-PF=2a=16,(F'為下焦點(diǎn)).
則有PF'=19.
則點(diǎn)P與兩個(gè)焦點(diǎn)所構(gòu)成三角形的周長(zhǎng)為PF+PF'+FF'=3+19+20
=42.
故選A.
點(diǎn)評(píng):本題考查雙曲線的定義、方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題和易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:存在x0∈R,使sinx0=1;命題q:x2=4的解集是{x|x=2},下列結(jié)論:
①命題“p∧q”是真命題;
②命題“p∧(¬q)”是真命題;
③命題“(¬p)∨q”是假命題;
④命題“(¬p)∨(¬q)”是假命題.
其中正確的是(  )
A、②④B、②③C、①②D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合M={x|2-x<0},N={x|x-3≤0},則M∩N為( 。
A、(-∞,-1)∪(2,3]
B、(-∞,3]
C、(2,3]
D、(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知點(diǎn)O為△ABC的重心,OA⊥OB,AB=6,則
AC
BC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)原點(diǎn)引曲線y=lnx的切線,求切線的方程及切點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各組向量不平行的是( 。
A、
a
=(1,0,0),
b
=(-3,0,0)
B、
a
=(0,1,0),
b
=(1,0,1)
C、
a
=(0,1,-1),
b
=(0,-1,1)
D、
a
=(1,0,0),
b
=(0,0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:當(dāng)a=2時(shí),函數(shù)f(x)=x2-alnx在區(qū)間(1,2]上單調(diào)遞增,g(x)=x-a
x
在區(qū)間(0,1)內(nèi)單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是2012年舉行的全國(guó)少數(shù)民族運(yùn)動(dòng)會(huì)上,七位評(píng)委為某民族舞蹈打出的分的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)和中位數(shù)分別為( 。
A、85,84
B、85,84.5
C、85,85
D、85,85.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
2
sinx+
1
2
cosx,則f(
π
12
)=( 。
A、
2
2
B、
3
2
C、1
D、
2

查看答案和解析>>

同步練習(xí)冊(cè)答案