(2012•蘭州模擬)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
一條漸近線的傾斜角為
π
3
,離心率為e,則
a2+e
b
的最小值為
2
6
3
2
6
3
分析:根據(jù)條件,確定幾何量之間的關(guān)系,再利用基本不等式,即可得到結(jié)論.
解答:解:由題意,
b
a
=
3

∴b=
3
a
,∴c=2a
a2+e
b
=
a2+2
3
a
=
1
3
(a+
2
a
)
1
3
×2
2
=
2
6
3
(當(dāng)且僅當(dāng)a=
2
時(shí)取等號(hào))
∴當(dāng)a=
2
時(shí),
a2+e
b
的最小值為
2
6
3

故答案為:
2
6
3
點(diǎn)評(píng):本題考查雙曲線的幾何性質(zhì),考查基本不等式的運(yùn)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)若函數(shù)f(x)=sinωx+
3
cosωx,x∈R
,又f(α)=f(β)=2,且|α-β|的最小值等于3π,則正數(shù)ω的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)某市為了推動(dòng)全民健身運(yùn)動(dòng)在全市的廣泛開展,該市電視臺(tái)開辦了健身競(jìng)技類欄目《健身大闖關(guān)》,規(guī)定參賽者單人闖關(guān),參賽者之間相互沒有影響,通過關(guān)卡者即可獲獎(jiǎng).現(xiàn)有甲、乙、丙3人參加當(dāng)天的闖關(guān)比賽,已知甲獲獎(jiǎng)的概率為
3
5
,乙獲獎(jiǎng)的概率為
2
3
,丙獲獎(jiǎng)而甲沒有獲獎(jiǎng)的概率為
1
5

(1)求三人中恰有一人獲獎(jiǎng)的概率;
(2)記三人中至少有兩人獲獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)若(1-2x)2012=a0+a1x+a2x2+…+a2012x2012,則
a1
2
+
a2
22
+…+
a2012
22012
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知F為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點(diǎn),P為雙曲線C右支上一點(diǎn),且位于x軸上方,M為直線x=-
a2
c
上一點(diǎn),O為坐標(biāo)原點(diǎn),已知
OP
=
OF
+
OM
,且|
OF
|=|
OM
|
,則雙曲線C的離心率為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案