函數(shù)f(x)=
1
3
-cos2ωx(ω>0)的周期與函數(shù)g(x)=tan
x
2
的周期相等,則ω等于
 
考點:三角函數(shù)的周期性及其求法
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用二倍角的余弦公式、三角函數(shù)的周期性,求得ω的值.
解答: 解:由于函數(shù)f(x)=
1
3
-cos2ωx(ω>0)=-
1
2
cos2ωx-
1
6
的周期與函數(shù)g(x)=tan
x
2
的周期相等,
=
π
1
2
,求得ω=
1
2

故答案為:
1
2
點評:本題主要考查二倍角的余弦公式、三角函數(shù)的周期性,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)=4x-m•2x+1,若存在實數(shù)x0,使得f(-x0)=-f(x0)成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+alnx,g(x)=(a+1)x,a≠-1.
(1)若函數(shù)f(x)在點(2,f(2))處的切線斜率為
1
2
,求f(x)的極值;
(2)若a∈(1,e],F(xiàn)(x)=f(x)-g(x),求證:當x1,x2∈[1,a]時,|F(x1)-F(x2)|<1恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知變量x,y滿足
x-y≥0
x-4y+3≤0
x+2y-9≥0
,則-2x+y的最大值為( 。
A、-1B、-3C、-8D、-9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的導數(shù)
(1)y=x4-3x2-5x+6
(2)y=x•tanx
(3)y=(x+1)(x+2)(x+3)
(4)y=
x+1
x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:3x+4y-2=0,l2:mx+2y+1+2m=0,當l1∥l2時,兩條直線的距離是( 。
A、
1
2
B、1
C、2
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在[-2π,2π)與-
23
7
π終邊相同的角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)
5
1-2i
+m(i為虛數(shù)單位)為純虛數(shù),則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)數(shù)列的前幾項,寫出下列各數(shù)列的一個通項公式:
(1)0,3,8,15,24,…;
(2)
1
2
,
3
4
,
7
8
,
15
16
,
31
32
,…;
(3)
2
3
,-1,
10
7
,-
17
9
,
26
11
,-
37
13
,…

查看答案和解析>>

同步練習冊答案