在△ABC中,若sinBsinC=cos2數(shù)學公式,則△ABC是


  1. A.
    等腰三角形
  2. B.
    直角三角形
  3. C.
    等邊三角形
  4. D.
    等腰直角三角形
A
分析:利用cos2=可得,再利用兩角和差的余弦可求.
解答:由題意,即sinBsinC=1-cosCcosB,亦即cos(C-B)=1,∵C,B∈(0,π),∴C=B,
故選A.
點評:本題主要考查兩角和差的余弦公式的運用,考查三角函數(shù)與解三角形的結合.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若a=7,b=3,c=8,則其面積等于( 。
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,
sinA-sinB
sin(A+B)
=
2
sinA-sinC
sinA+sinB

(I)求B;
(Ⅱ)若cosA=
3
5
,求sinC
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的個數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,則“p∧¬q”為假命題;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導函數(shù)的最大值為3,則函數(shù)f(x)的圖象關于x=
π
3
對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若cos(
π
2
-A):sinB:cos(
2
+C)=3:2:4
,則cosC的值為
-
1
4
-
1
4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在△ABC中,
sinA-sinB
sin(A+B)
=
2
sinA-sinC
sinA+sinB

(I)求B;
(Ⅱ)若cosA=
3
5
,求sinC
的值.

查看答案和解析>>

同步練習冊答案