【題目】已知圓經(jīng)過兩點,且圓心在直線l:上.
Ⅰ求圓的方程;
Ⅱ求過點且與圓相切的直線方程;
Ⅲ設圓與x軸相交于A、B兩點,點P為圓上不同于A、B的任意一點,直線PA、PB交y軸于M、N點當點P變化時,以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結論.
【答案】(Ⅰ);(Ⅱ)或;(Ⅲ)經(jīng)過定點.
【解析】
Ⅰ設圓圓心為,由求得a的值,可得圓心坐標和半徑,從而求得圓的標準方程.
Ⅱ當切線斜率不存在時,求得的方程;當切線斜率存在時,設切線:,由圓心到切線的距離等于半徑求得k的值,可得切線的方程.
Ⅲ設,由條件求得M、N的坐標,可得圓的方程再根據(jù)定點在x軸上,求出定點的坐標.
解:Ⅰ法一:設圓圓心為,由得,,
解得,,半徑為,
所以圓:.
Ⅱ當切線斜率不存在時,:.
當切線斜率存在時,設切線:,
即,由圓心到切線的距離,
解得,此時:.
綜上::或
Ⅲ設,則.
又,,
所以:,,:,
圓的方程為.
化簡得.
由動點關于x軸的對稱性可知,定點必在x軸上,令,得.
又點在圓內(nèi),
所以當點P變化時,以MN為直徑的圓經(jīng)過定點.
科目:高中數(shù)學 來源: 題型:
【題目】f(n)=1+ + +…+ (n∈N*),計算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推測當n≥2時,有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )圖象的一部分.為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,直線l:,設圓C的半徑為1,圓心在l上.
若圓心C也在直線上,過A作圓C的切線,求切線方程;
若圓C上存在點M,使,求圓心C的橫坐標a取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:
廣告費用x(萬元) | 1 | 2 | 4 | 5 |
銷售額y(萬元) | 6 | 14 | 28 | 32 |
根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程 = x+ 中的 為6.6,據(jù)此模型預報廣告費用為10萬元時銷售額為( )
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com