【題目】已知圓經(jīng)過兩點,且圓心在直線l上.

求圓的方程;

求過點且與圓相切的直線方程;

設圓x軸相交于A、B兩點,點P為圓上不同于AB的任意一點,直線PAPBy軸于M、N當點P變化時,以MN為直徑的圓是否經(jīng)過圓內(nèi)一定點?請證明你的結論.

【答案】(Ⅰ);(Ⅱ);(Ⅲ)經(jīng)過定點

【解析】

設圓圓心為,由求得a的值,可得圓心坐標和半徑,從而求得圓的標準方程.

當切線斜率不存在時,求得的方程;當切線斜率存在時,設切線,由圓心到切線的距離等于半徑求得k的值,可得切線的方程.

,由條件求得M、N的坐標,可得圓的方程再根據(jù)定點在x軸上,求出定點的坐標.

解:法一:設圓圓心為,由得,,

解得,半徑為,

所以圓

當切線斜率不存在時,

當切線斜率存在時,設切線

,由圓心到切線的距離,

解得,此時

綜上:

,則

,

所以,,,

的方程為

化簡得

由動點關于x軸的對稱性可知,定點必在x軸上,令,得

又點在圓內(nèi),

所以當點P變化時,以MN為直徑的圓經(jīng)過定點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,設。

(1)求函數(shù)的最小正周期;

(2)當時,求函數(shù)的最大值及最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(n)=1+ + +…+ (n∈N*),計算可得f(2)= ,f(4)>2,f(8)> ,f(16)>3,f(32)> ,推測當n≥2時,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤ )圖象的一部分.為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點(
A.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
B.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變
C.向左平移 個單位長度,再把所得各點的橫坐標縮短到原來的 倍,縱坐標不變
D.向左平移 個單位長度,再把所得各點的橫坐標伸長到原來的2倍,縱坐標不變

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線l,設圓C的半徑為1,圓心在l上.

若圓心C也在直線上,過A作圓C的切線,求切線方程;

若圓C上存在點M,使,求圓心C的橫坐標a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2asinωxcosωx+2 cos2ωx﹣ (a>0,ω>0)的最大值為2,且最小正周期為π. (I)求函數(shù)f(x)的解析式及其對稱軸方程;
(II)若f(α)= ,求sin(4α+ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表:

廣告費用x(萬元)

1

2

4

5

銷售額y(萬元)

6

14

28

32

根據(jù)上表中的數(shù)據(jù)可以求得線性回歸方程 = x+ 中的 為6.6,據(jù)此模型預報廣告費用為10萬元時銷售額為(
A.66.2萬元
B.66.4萬元
C.66.8萬元
D.67.6萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知1+ = . (I)求A;
(Ⅱ)若BC邊上的中線AM=2 ,高線AH= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C:(x﹣2)2+(y﹣3)2=1交于點M、N兩點.
(1)求k的取值范圍;
(2)若 =12,其中O為坐標原點,求|MN|.

查看答案和解析>>

同步練習冊答案