【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設 ,Sn是數(shù)列{bn}的前n項和,對任意正整數(shù)n不等式 恒成立,求實數(shù)a的取值范圍.

【答案】解:(Ⅰ)設數(shù)列{an}的公比為q,a1+a3=20,a2=8.

,

∴2q2﹣5q+2=0

∵公比q>1,∴ ,∴數(shù)列{an}的通項公式為

(Ⅱ)解:∴

Sn=

∴Sn= =

對任意正整數(shù)n恒成立,設 ,易知f(n)單調(diào)遞增.

n為奇數(shù)時,f(n)的最小值為 ,∴ ,

n為偶數(shù)時,f(n)的最小值為 ,∴ ,

綜上, ,即實數(shù)a的取值范圍是


【解析】(Ⅰ)設數(shù)列{an}的公比為q,l利用a1+a3=20,a2=8.列出方程組,求出首項與公比然后求解通項公式.(Ⅱ)利用錯位相減法求和求出Sn,∴ 對任意正整數(shù)n恒成立,設 ,f(n)單調(diào)遞增.通過n為奇數(shù)時,n為偶數(shù)時,分別f(n)的最小值,求解實數(shù)a的取值范圍.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關(guān)系).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時點M到平面ABC的距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學有劉徽發(fā)現(xiàn)當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的“徽率”.某同學利用劉徽的“割圓術(shù)”思想設計了一個計算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)(

A.2.598
B.3.106
C.3.132
D.3.142

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= ,若f(x)的值域為R,是實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大;
(2)若△ABC的面積為為 且b= ,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線y=kx﹣1與曲線 有兩個不同的公共點,則k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準備對該項目進行考核,考核的硬性指標是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項目滿意程度的評分,繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于60分的市民中隨機抽取2人進行座談,求這2人評分恰好都在[50,60)的概率;
(II)根據(jù)你所學的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a、b、c分別是△ABC的三個內(nèi)角A、B、C的對邊.
(1)若△ABC面積SABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.

查看答案和解析>>

同步練習冊答案