過(guò)點(diǎn)P(1,1)作圓x
2+y
2=1的切線方程為
.
考點(diǎn):圓的切線方程
專題:直線與圓
分析:根據(jù)直線和圓相切的等價(jià)條件轉(zhuǎn)化為圓心到直線的距離等于半徑即可得到結(jié)論.
解答:
解:圓心坐標(biāo)為(0,0),半徑為1,
∵點(diǎn)P(1,1)在圓外,
∴若直線斜率k不存在,
則直線方程為x=1,圓心到直線的距離為1,滿足相切.
若直線斜率存在設(shè)為k,
則直線方程為y-1=k(x-1),即kx-y+1-k=0,
則圓心到直線kx-y+1-k=0的距離等于半徑1,
即d=
=1,
解得k=0,此時(shí)直線方程為y=1,
綜上切線方程為x=1或y=1,
故答案為:x=1或y=1
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系的應(yīng)用,根據(jù)相切的等價(jià)條件是解決本題的關(guān)鍵.注意討論直線的斜率是否存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
A,B,C是平面內(nèi)不共線的三點(diǎn),點(diǎn)P在該平面內(nèi)且有
+2=,現(xiàn)將一粒黃豆隨機(jī)撒在△ABC內(nèi),則這粒黃豆落在△PBC內(nèi)的概率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若函數(shù)f(x)=x
2-
lnx+1在其定義域內(nèi)的一個(gè)子區(qū)間(a-1,a+1)內(nèi)存在極值,則實(shí)數(shù)a的取值范圍
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知圓C:x
2+y
2=4,過(guò)點(diǎn)A(2,3)作C的切線,切點(diǎn)分別為P,Q,則直線PQ的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an+1(n∈N*).
(1)求數(shù)列{an}的前三項(xiàng)和a1,a2,a3;
(2)求{an-1}的通項(xiàng)公式,并求出an的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
設(shè)方程ex=|ln(-x)|(其中e為自然對(duì)數(shù)的底數(shù))的兩個(gè)根分別為x1,x2,則( 。
A、x1x2<0 |
B、x1x2=0 |
C、x1x2>0 |
D、0<x1x2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列1
,3
,5
,7
,…則其前n項(xiàng)和S
n為( 。
A、n2+1- |
B、n2+2- |
C、n2+1- |
D、n2+2- |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
若函數(shù)f(x)=x2-2x,x∈[-2,4],則函數(shù)f(x)的值域?yàn)?div id="pzdjtnf" class='quizPutTag' contenteditable='true'>
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知向量
=(sin2x,cos2x),
=(
,
),x∈R,且f(x)=
•+|
|+|
|.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[
,
],求函數(shù)f(x)的最大值和最小值.
查看答案和解析>>