設(shè)f(x)的定義域?yàn)椋?2,-)∪(,2),則的定義域?yàn)?   
【答案】分析:由函數(shù)f(x)的定義域?yàn)椋?2,-)∪(,2),我們根據(jù)復(fù)合函數(shù)定義域的求法,結(jié)合的解析式,我們可構(gòu)造出一個(gè)關(guān)于x的不等式組,解不等式組即可得到答案.
解答:解:∵f(x)的定義域?yàn)椋?2,-)∪(,2),
要使函數(shù)的解析式有意義,則
∈(-2,-)∪(,2),即x∈(-4,-1)∪(1,4)
∈(-2,-)∪(,2),即x∈(-4,-1)∪(1,4)
故x∈(-4,-1)∪(1,4)
故答案:(-4,-1)∪(1,4)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的定義域及其求法,求復(fù)合函數(shù)的定義域的關(guān)鍵是“以不變應(yīng)萬(wàn)變”,即不管函數(shù)括號(hào)里的式子形式怎么變化,括號(hào)里式子的取值范圍始終不發(fā)生變化.即:若f[g(x)]中若內(nèi)函數(shù)的值域?yàn)锳,則求f[u(x)]的定義域等價(jià)于解不等式u(x)∈A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)椋?,+∞),f(x)的導(dǎo)函數(shù)為f′(x),且對(duì)任意正數(shù)x均有f′(x)>
f(x)
x

(Ⅰ)判斷函數(shù)F(x)=
f(x)
x
在(0,+∞)上的單調(diào)性;
(Ⅱ)設(shè)x1,x2∈(0,+∞),比較f(x1)+f(x2)與f(x1+x2)的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、設(shè)F(x)的定義域?yàn)镽,且滿足F(ab)=F(a)F(b),其中F(2)=8.定義在R上的函數(shù)f(x)滿足下述條件:①f(x)是奇函數(shù);②f(x+2)是偶函數(shù);③在[-2,2]上,f(x)=F(x)
(1)設(shè)G(x)=f(x+4),判斷G(x)的奇偶性并證明;(2)解關(guān)于x的不等式:f(x)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)閇0,2],則函數(shù)f(x2)的定義域是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)镈,若f(x)滿足下面兩個(gè)條件,則稱f(x)為閉函數(shù),[a,b]為函數(shù)f(x)的閉區(qū)間.①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b].
(1)寫出f(x)=x3的一個(gè)閉區(qū)間;
(2)若f(x)=
13
x3-k為閉函數(shù)求k取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)的定義域?yàn)镈,f(x)滿足下面兩個(gè)條件,則稱f(x)為閉函數(shù).
①f(x)在D內(nèi)是單調(diào)函數(shù);
②存在[a,b]⊆D,f(x)在[a,b]上的值域?yàn)閇a,b].
如果f(x)=
2x+1
+k
為閉函數(shù),那么k的取值范圍是
-1<k≤-
1
2
-1<k≤-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案