在正方體ABCDA1B1C1D1中,EF為棱AD、AB的中點.

(1)求證:EF∥平面CB1D1;

(2)求證:平面CAA1C1⊥平面CB1D1

 

 

 

【答案】

(1)證明:連結BD.

在長方體中,對角線BD∥BD

 E、F為棱AD、AB的中點,

 EF∥BD.     EF∥BD                        

B1D1平面, EF平面,

  EF∥平面CB1D1.                   ………………………………7分

(2) 在長方體中,AA1⊥平面A1B1C1D1,而B1D1平面A1B1C1D1

 AA1B1D1.

在正方形A1B1C1D1中,A1C1B1D1

 B1D1⊥平面CAA1C1.          

 B1D1平面CB1D1,平面CAA1C1⊥平面CB1D1

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,E是棱A1B1的中點,則A1B與D1E所成角的余弦值為( 。
A、
5
10
B、
10
10
C、
5
5
D、
10
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,AB與平面A1BC1所成角的正弦值為(  )
A、
6
3
B、
3
3
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

在正方體ABCD-A′B′C′D′中,點M是棱AA′的中點,點O是對角線BD′的中點.

(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;

(Ⅱ)求二面角M-BC′-B′的大。 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

在正方體ABCD-A′B′C′D′中,點M是棱AA′的中點,點O是對角線BD′的中點.

(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;

(Ⅱ)求二面角M-BC′-B′的大小; 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考試題(四川卷)解析版(文) 題型:解答題

 

在正方體ABCDA′BCD′中,點M是棱AA′的中點,點O是對角線BD′的中點.

(Ⅰ)求證:OM為異面直線AA′和BD′的公垂線;

(Ⅱ)求二面角MBC′-B′的大;  

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案