13.滿足集合M⊆{1,2,3,4},且M∩{1,2,4}={1,4}的集合M的個數(shù)為( 。
A.1B.2C.3D.4

分析 根據(jù)M∩{1,2,4}={1,4}得到1,4∈M,即可得到結論.

解答 解:∵M∩{1,2,4}={1,4},
∴1,4是M中的元素,2不是M中的元素.
∵M⊆{1,2,3,4},
∴M={1,4}或M={1,3,4}.
故選:B.

點評 本題主要考查集合的基本運算,根據(jù)集合關系是解決本題的關鍵,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

20.已知集合A={1,2a},B={a,b},若A∩B={$\frac{1}{4}$},則A∪B為{-2,1,$\frac{1}{4}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合M={x|lgx≤0},集合N={x|x2-3x<0},則MUN=( 。
A.{x|0<x<3}B.{x|x≤1}C.{x|x<3}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合A={x|x2-4=0},則下列關系式表示正確的是(  )
A.ϕ∈AB.{-2}=AC.2∈AD.{2,-2}?A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)y=|-x|-|x-3|在定義域上有(  )
A.最大值2,最小值-2B.最大值3,最小值-3
C.最大值1,最小值-3D.最大值4,最小值0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.圓心是點C(2,-3)且經(jīng)過原點的圓的方程是(  )
A.(x+2)2+(y-3)2=13B.(x+2)2+(y+3)2=$\sqrt{13}$C.(x+2)2+(y-3)2=$\sqrt{13}$D.(x-2)2+(y+3)2=13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若復數(shù)z滿足z(1+2i)=2,則z的虛部為(  )
A.$-\frac{4}{5}$B.$\frac{4}{5}$C.$-\frac{4}{5}i$D.$\frac{4}{5}i$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在斜三角形ABC中,角A,B,C所對的邊分別為a,b,c,若$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$=1,則$\frac{{a}^{2}+^{2}}{{c}^{2}}$=( 。
A.$\frac{3}{2}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知集合A={1,2,3,…,2105,2016},集合B={x|x=3k+1,k∈Z},則A∩B中的最大元素是(  )
A.2014B.2015C.2016D.以上答案都不對

查看答案和解析>>

同步練習冊答案