(2013•煙臺二模)設(shè)p:f(x)=lnx+2x2+mx+1在(0,+∞)內(nèi)單調(diào)遞增,q:m≥-5,則p是q的( 。
分析:先利用導(dǎo)數(shù)求命題f(x)=lnx+2x2+mx+1在(0,+∞)內(nèi)單調(diào)遞增的充要條件,再利用充要條件的定義判斷結(jié)果即可
解答:解:若f(x)=lnx+2x2+mx+1在(0,+∞)內(nèi)單調(diào)遞增,則f′(x)=
1
x
+4x+m≥0在(0,+∞)上恒成立
即m≥-(
1
x
+4x)在(0,+∞)上恒成立
∵-(
1
x
+4x)≤-2
1
x
×4x
=-4
∴m≥-4,∵{m|m≥-4}⊆{m|m≥-5}
∴p是q的充分不必要條件
故選A
點(diǎn)評:本題考查了充要條件的定義運(yùn)用和導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,解題時(shí)要注意已知函數(shù)單調(diào)性,求參數(shù)范圍題型的解決辦法
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺二模)在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+S2=12.q=
S2
b2

(Ⅰ)求an與bn;
(Ⅱ)設(shè)數(shù)列{cn}滿足cn=
1
Sn
,求的{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺二模)已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)函數(shù)f′(x)滿足:f′(0)>0,若對任意實(shí)數(shù)x,有f(x)≥0,則
f(1)
f′(0)
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺二模)將函數(shù)f(x)=3sin(4x+
π
6
)圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向右平移
π
6
個(gè)單位長度,得到函數(shù)y=g(x)的圖象,則y=g(x)圖象的一條對稱軸是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺二模)已知i為虛數(shù)單位,復(fù)數(shù)z=
1-2i
2-i
,則復(fù)數(shù)z的虛部是( 。

查看答案和解析>>

同步練習(xí)冊答案