14.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線經(jīng)過(guò)點(diǎn)(3,-4),則此雙曲線的離心率為$\frac{5}{3}$.

分析 求出雙曲線的漸近線方程,代入點(diǎn)(3,-4),可得b=$\frac{4}{3}$a,再由c=$\sqrt{{a}^{2}+^{2}}$,e=$\frac{c}{a}$,即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為y=±$\frac{a}$x,
由漸近線過(guò)點(diǎn)(3,-4),
可得-4=-$\frac{3b}{a}$,
即b=$\frac{4}{3}$a,
c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{{a}^{2}+\frac{16}{9}{a}^{2}}$=$\frac{5}{3}$a,
可得e=$\frac{c}{a}$=$\frac{5}{3}$.
故答案為:$\frac{5}{3}$.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的性質(zhì),主要是漸近線方程和離心率,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一副三角板拼成一個(gè)四邊形ABCD,如圖,然后將它沿BC折成直二面角.

(1)求證:平面ABD⊥平面ACD;
(2)求AD與BC所成的角的正切值;
(3)求二面角A-BD-C的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.從0,2中選一個(gè)數(shù)字,從1,3,5中選兩個(gè)數(shù)字,組成無(wú)重復(fù)數(shù)字的三位數(shù),其中奇數(shù)的個(gè)數(shù)為18(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在斜四棱柱ABCD-A1B1C1D1的底面是邊長(zhǎng)為2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上的射影為△ABD的重心G.
(1)求證:平面ACC1A1⊥平面BDD1B1;(2)求三棱錐C1-A1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且B=2C,2bcosC-2ccosB=a,則tanC=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$±\frac{{\sqrt{3}}}{3}$C.$±\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,等腰梯形ABCD中,$\overrightarrow{AB}=2\overrightarrow{DC}$,3$\overrightarrow{AE}=2\overrightarrow{EC}$.一雙曲線經(jīng)過(guò)C,D,E三點(diǎn),且以A,B為焦點(diǎn),則該雙曲線離心率是$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.將一個(gè)骰子先后拋擲兩次,觀察向上的點(diǎn)數(shù).
(1)列出兩數(shù)都為奇數(shù)的所有可能情況,并求兩數(shù)都為奇數(shù)的概率;
(2)以第一次向上的點(diǎn)數(shù)為橫坐標(biāo)x,第二次向上的點(diǎn)數(shù)為縱坐標(biāo)y,列出“x>y”的所有可能情況,并求事件“x>y”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.6位同學(xué)在2016年元旦聯(lián)歡中進(jìn)行紀(jì)念品的交換,任意兩位同學(xué)之間最多交換一次,進(jìn)行交換的兩位同學(xué)互贈(zèng)一份紀(jì)念品,已知6位同學(xué)之間共進(jìn)行了13次交換,則收到3份紀(jì)念品的同學(xué)人數(shù)為( 。
A.0或1B.1或2C.0或2D.1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的頂點(diǎn)A(1,3),B(-1,-1),C(2,1),求△ABC的邊BC上的高AD的斜率和垂足D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案