已知
a
,
b
是單位向量,
a
b
=0,若向量
c
與向量
a
b
共面,且滿足|
a
-
b
-
c
|=1,則|
c
|的取值范圍是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:
a
,
b
是單位向量,
a
b
=0.可設(shè)
a
=(1,0),
b
=(0,1),
c
=(x,y),由向量
c
滿足|
c
-
a
+
b
|=1,可得(x-1)2+(y+1)2=1.其圓心C(1,-1),半徑r=1.利用|OC|-r≤|
c
|=
x2+y2
≤|OC|+r即可得出.
解答: 解:由
a
,
b
是單位向量,
a
b
=0,
可設(shè)
a
=(1,0),
b
=(0,1),
c
=(x,y),
∵向量
c
滿足|
c
-
a
+
b
|=1,
∴|(x-1,y+1)|=1,
(x-1)2+(y+1)2
=1,即(x-1)2+(y+1)2=1.
其圓心C(1,-1),半徑r=1.
∴|OC|=
2

2
-1≤|
c
|=
x2+y2
2
+1.
∴|
c
|的取值范圍是[
2
-1,
2
+1].
故答案為:[
2
-1,
2
+1].
點(diǎn)評(píng):本題考查了向量的垂直與數(shù)量積的關(guān)系、數(shù)量積的運(yùn)算性質(zhì)、點(diǎn)與圓上的點(diǎn)的距離大小關(guān)系,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線x2-y2=a2的兩個(gè)焦點(diǎn),Q是雙曲線上任意一點(diǎn),從F1引∠F1QF2平分線的垂線,垂足是P,則點(diǎn)P的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sinx(cosx-sinx),x∈R.
(1)求f(x)的最大值和單調(diào)增區(qū)間;
(2)若a∈(0,
π
2
),f(a)=
2
-2
4
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-4lnx,a∈R.
(1)當(dāng)a=
1
2
時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx-2sin2
ωx
2
(ω>0)的最小正周期為3π.當(dāng)x∈[
π
2
4
]時(shí),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(
3
,sin(x-
π
12
)),
b
=(sin(2x-
π
6
),2sin(x-
π
12
)),定義函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的表達(dá)式;
(2)令φ(x)=f(x+
π
4
),試畫出函數(shù)φ(x)在[0,π]這個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式x2≤2-|x-m|至少有一個(gè)負(fù)數(shù)解,則實(shí)數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,y>0,x,a,b,y成等差數(shù)列,x,c,d,y成等比數(shù)列,則
(a+b)2
cd
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a2=1,前n項(xiàng)和為Sn,且Sn=
n(an-a1)
2
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求
lim
n→∞
Sn
n2
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案