已知正項(xiàng)數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),且a1=1,則數(shù)列{log3an}的前n項(xiàng)和是( 。
A、
n(n-1)
2
B、n-1
C、
n(n+1)
2
D、n
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:根據(jù)數(shù)列的遞推關(guān)系,結(jié)合等差數(shù)列的通項(xiàng)公式即可得到結(jié)論.
解答: 解:∵正項(xiàng)數(shù)列{an}滿足log3an+1=log3an+1(n∈N*),
∴l(xiāng)og3an+1-log3an=1,(n∈N*),
即{log3an}是以log3a1=log31=0為首項(xiàng),d=1的等差數(shù)列,
則數(shù)列{log3an}的前n項(xiàng)和是0+
n(n-1)
2
=
n(n-1)
2

故選:A
點(diǎn)評(píng):本題主要考查數(shù)列的通項(xiàng)公式,根據(jù)條件確定數(shù)列是等差數(shù)列是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+
y2
4
=1短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線l過定點(diǎn)(0,1)交橢圓于兩點(diǎn)C,D.
(1)若l與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),
CE
=
FD
,求直線l的方程:
(2)設(shè)直線AD,CB的斜率分別為k1k2,若k1:k2=2:1,求k的值.
(3)(理)設(shè)C(x1,y1),D(x2,y2),分別過C、D作斜率為-
4x1
y1
和-
4x2
y2
兩條直線l1和l2.記l1和l2的交點(diǎn)為M,求△MCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于f(x)=3sin(2x+
π
4
)有如下命題:其中正確的判斷是
 

①若f(x1)=f(x2)=0,則x1-x2是π的整數(shù)倍;
②函數(shù)解析式可改為f(x)=3cos(2x-
π
4
);
③函數(shù)圖象關(guān)于x=-
π
8
對(duì)稱;
④函數(shù)f(x)是奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖有一個(gè)幾何體的三視圖(單位:cm),試畫出它的直觀圖,并計(jì)算這個(gè)幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=r2和點(diǎn)P(a,b)若點(diǎn)P在圓C內(nèi),過P作直線l交圓C于A、B兩點(diǎn),分別過A、B兩點(diǎn)作圓C的切線,當(dāng)兩條切線相交于點(diǎn)Q時(shí),求點(diǎn)Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線y=Asin(ωx+φ)(A>0,ω>0)上的一個(gè)最高點(diǎn)的坐標(biāo)為(
π
8
,
2
),此點(diǎn)到相鄰最低點(diǎn)間的曲線與x軸交于點(diǎn)(
3
8
π,0),若φ∈(-
π
2
,
π
2
).
(1)試求這條曲線的函數(shù)表達(dá)式;
(2)用“五點(diǎn)法”畫出(1)中函數(shù)在[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2x-1
+a為奇函數(shù),
(1)求定義域和a的值;
(2)求證:f(x)在x∈(0,+∞)上單調(diào)遞減,解不等式f(m+1)+f(-2m+3)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓C:x2+y2-4x+6y=0的圓心C到直線l:4x-3y=0的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知數(shù)列{an}滿足a1=1,an+1=
2n+1an
an+2n
 (n∈N*),
(Ⅰ)證明數(shù)列{ 
2n
an
 }是等差數(shù)列;
(Ⅱ)求數(shù)列{an)的通項(xiàng)公式;
(Ⅲ)設(shè)bn=n(n+1)an 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案