16.若$\frac{1}{a}$<$\frac{1}$<0,則下列結(jié)論正確的是( 。
A.a2>b2B.ab>b2C.a-b<0D.|a|+|b|=|a+b|

分析 根據(jù)不等式的性質(zhì)得到b<a<0,然后分別進行判斷即可.

解答 解:由$\frac{1}{a}$<$\frac{1}$<0,得b<a<0,
則a2<b2,故A錯誤,
ab<b2,故B錯誤,
a-b>0,故C錯誤,
|a|+|b|=|a+b|=-a-b,故D正確
故選:D.

點評 本題主要考查命題的真假判斷,根據(jù)不等式的性質(zhì)得到b<a<0是解決本題的關(guān)鍵.比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-alnx,a∈R.
(Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)求f(x)在區(qū)間[1,+∞)上的最小值;
(Ⅲ)在(Ⅰ)的條件下,若h(x)=x2-f(x),求證:當1<x<e2時,恒有$x<\frac{4+h(x)}{4-h(x)}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,OM,ON是兩條海岸線,Q為海中一個小島,A為海岸線OM上的一個碼頭.已知tan∠MON=-3,OA=6km,Q到海岸線OM,ON的距離分別為3km,$\frac{{6\sqrt{10}}}{5}$km.現(xiàn)要在海岸線ON上再建一個碼頭,使得在水上旅游直線AB經(jīng)過小島Q.
(1)求水上旅游線AB的長;
(2)若小島正北方向距離小島6km處的海中有一個圓形強水波P,從水波生成th時的半徑為r=3$\sqrt{at}$(a為大于零的常數(shù)).強水波開始生成時,一游輪以18$\sqrt{2}$km/h的速度自碼頭A開往碼頭B,問實數(shù)a在什么范圍取值時,強水波不會波及游輪的航行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.一個幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積為16cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖是一個三棱錐的三視圖,則該三棱錐的外接球的表面積為( 。
A.$\frac{\sqrt{3}}{2}$πB.πC.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線(a-1)x+ay+1=0不過第二象限,則實數(shù)a的取值范圍是( 。
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.我國是世界上嚴重缺水的國家.某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸).將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(Ⅲ)估計居民月均水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知U=R,集合A={x|x≥0},B={x|2≤x≤4},則A∩(∁UB)=( 。
A.{x|x≤0}B.{x|2≤x≤4}C.{x|0<x≤2或x≥4}D.{x|0≤x<2或x>4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果lg3,lg(sinx-$\frac{1}{2}$),lg(1+y)依次構(gòu)成等差數(shù)列,那么( 。
A.y有最小值為-1,最大值為-$\frac{11}{12}$B.y有最大值為1,無最小值
C.y無最小值,有最大值為-$\frac{11}{12}$D.y有最小值為-1,最大值為1

查看答案和解析>>

同步練習冊答案