【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交, 圓于不同兩點,記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
【答案】(1)(2)或.
【解析】試題分析:(1)首先根據(jù)條件設出直線的方程,然后利用點到直線的距離公式求得的取值范圍,;(2)首先設出點的坐標,然后分別將的方程代入圓的方程,從而利用韋達定理,結合梯形的性質(zhì)求得的值.
試題解析:(1)顯然k≠0,所以l1:y=kx,l2:y=-x.
依題意得M到直線l1的距離d1=<,
整理得k2-4k+1<0,解得2-<k<2+; …2分
同理N到直線l2的距離d2=<,解得-<k<, …4分
所以2-<k<. …5分
(2)設A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),
將l1代入圓M可得(1+k2)x2-4(1+k)x+6=0,
所以x1+x2=,x1x2=; …7分
將l2代入圓N可得:(1+k2)x2+16kx+24k2=0,
所以x3+x4=-,x3x4=. …9分
由四邊形ABCD為梯形可得,所以=,
所以(1+k)2=4,解得k=1或k=-3(舍). …12分
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列是遞增數(shù)列,其前項和為,且.
(I)求數(shù)列的通項公式;
(II)設,求數(shù)列的前 項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(1+sin2x,sinx﹣cosx), =(1,sinx+cosx),函數(shù)f(x)=
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的最大值及取得最大值相應的x的集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究學生在考試時做解答題的情況,老師從甲、乙兩個班級里各隨機抽取了五份答卷并對解答題第16題(滿分13分)的得分進行統(tǒng)計,得到對應的甲、乙兩組數(shù)據(jù),其莖葉圖如圖所示,其中x,y∈{0,1,2,3},已知甲組數(shù)據(jù)的中位數(shù)比乙組數(shù)據(jù)的平均數(shù)多 ,則x+y的值為( )
A.5
B.4
C.3
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,如果輸入的x∈[﹣2,2],那么輸出的y屬于( )
A.[5,9]
B.[3,9]
C.(1,9]
D.(3,5]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據(jù)自己對程序框圖的理解,各自編寫程序重復運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)
運行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的頻數(shù)統(tǒng)計表(部分)
運行 | 輸出y的值 | 輸出y的值 | 輸出y的值 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
當n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編寫程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,設橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B1作直線交橢圓于P、Q兩點,使PB2⊥QB2,求△PB2Q的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com