(本小題滿分12分)
如圖,多面體ABCD—EFG中,底面
ABCD為正方形,GD//FC//AE,AE⊥平面ABCD,其正視圖、俯視圖如下:
(I)求證:平面AEF⊥平面BDG;
(II)若存在
使得
,二面角A—BG—K的大小為
,求
的值。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
如圖1,在平面內(nèi),ABCD是
的菱形,ADD``A
1和CD D`C
1都是正方形.將兩個正方形分別沿AD,CD折起,使D``與D`重合于點D
1 .設直線
l過點B且垂直于菱形ABCD所在的平面,點E是直線
l上的一個動點,且與點D
1位于平面ABCD同側(圖2).
(Ⅰ) 設二面角E – AC – D
1的大小為q,若
£q£
,求線段BE長的取值范圍;
(Ⅱ)在線段
上存在點
,使平面
平面
,求
與BE之間滿足的關系式,并證明:當0 < BE <
a時,恒有
< 1.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,且底面ABCD是正方形,DM⊥PC,垂足為M.
(1)求證:BD⊥平面PAC.
(2)求證:平面MBD⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題13分)如圖,在四棱錐
中,
底面
是矩形,側棱PD⊥底面
,
,
是
的中點,作
⊥
交
于點
.
(1)證明:
∥平面
;
(2)證明:
⊥平面
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在棱長為1的正方體
中,
分別是
的中點,
在棱
上,且
,H
為
的中點,應用空間向量方法求解下列問題.
(1)求證:
;
(2)求EF與
所成的角的余弦;
(3)求FH的長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
⊿ABC中,AB=AC=5,BC=6,PA
平面ABC,則點P到BC的距離是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
P為正方形ABCD所在平面外一點,PA⊥面ABCD,AE⊥PB,求證:AE⊥PC.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本大題8分)已知正方體
,求:
(1)異面直線
與
所成的角;
(2)證明:直線
//平面
C
(3)二面角D— A
B—C
的大小;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
.設地球半徑為R,如果A、B兩點在北偉
30°的緯線上,它們的經(jīng)度差為
,則A、B兩點的球面距離為 ( )
A.
B.
C.
D.
查看答案和解析>>