【題目】已知函數(shù).

(1)判斷函數(shù)的奇偶性;

(2)對任意兩個實數(shù),求證:當(dāng)時, ;

(3)對任何實數(shù), 恒成立,求實數(shù)的取值范圍.

【答案】(1)函數(shù)上的奇函數(shù);(2)證明見解析;(3).

【解析】試題分析:1根據(jù)函數(shù)奇偶性的定義判斷函數(shù)的奇偶性即可,(2)根據(jù)題意有兩種情形:,求出的表達(dá)式,根據(jù)函數(shù)的性質(zhì)證明即可;3根據(jù)函數(shù)的單調(diào)性問題轉(zhuǎn)化為,換元后,根據(jù)二次函數(shù)的性質(zhì)求出,即可得的取值范圍.

試題解析:

(1)任取,則,

任取,則,

,

,所以對于任意的,均有

所以函數(shù)上的奇函數(shù).

(2)任取,當(dāng)時,(不妨令),

有下列兩種情形:(1)若,

;

(2)若,則,

因為,所以,

所以,即.

(3)由(1)(2)得:

對任意兩個實數(shù),當(dāng)時, ,

則對任意兩個實數(shù),當(dāng)時, ,

所以函數(shù)上的單調(diào)遞增函數(shù),

即為,

所以.

所以原題意等價于對于任何實數(shù)恒成立,

只需,而,

所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在高中學(xué)習(xí)過程中,同學(xué)們經(jīng)常這樣說:“數(shù)學(xué)物理不分家,如果物理成績好,那么學(xué)習(xí)數(shù)學(xué)就沒什么問題!蹦嘲噌槍Α案咧猩锢韺W(xué)習(xí)對數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績與數(shù)學(xué)成績具有線性相關(guān)關(guān)系的結(jié)論,F(xiàn)從該班隨機抽取5位學(xué)生在一次考試中的數(shù)學(xué)和物理成績,如下表:

(1)求數(shù)學(xué)成績y對物理成績x的線性回歸方程。若某位學(xué)生的物理成績?yōu)?0分,預(yù)測他的數(shù)學(xué)成績;

(2)要從抽取的這5位學(xué)生中隨機抽取2位參加一項知識競賽,求選中的學(xué)生的數(shù)學(xué)成績至少有一位高于120分的概率。(參考公式: 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班進(jìn)行教學(xué)實驗,為了解教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取名學(xué)生的成績進(jìn)行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.

(1)分別計算甲、乙兩班個樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更
佳;
(2)甲、乙兩班個樣本中,成績在分以下(不含分)的學(xué)生中任意選取人,求這人來自不同班級的概率;

(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

附:

獨立性檢驗臨界值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點P(4,5)關(guān)于直線l的對稱點坐標(biāo);

(2)直線l1yx-2關(guān)于直線l的對稱直線的方程;

(3)直線l關(guān)于點A(3,2)的對稱直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 , 分別是其左、右焦點,以線段為直徑的圓與橢圓有且僅有兩個交點.

(1)求橢圓的方程;

(2)設(shè)過點且不與坐標(biāo)軸垂直的直線交橢圓于兩點,線段的垂直平分線與軸交于點,點橫坐標(biāo)的取值范圍是,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點表示十月的平均最高氣溫約為15℃,B點表示四月的平均最低氣溫約為5℃下面敘述不正確的是 ( )

A. 各月的平均最低氣溫都在0℃以上

B. 七月的平均溫差比一月的平均溫差大

C. 三月和十一月的平均最高氣溫基本相同

D. 平均最高氣溫高于20℃的月份有5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點的橢圓的兩焦點分別為雙曲線的頂點,直線與橢圓交于、兩點,且,點是橢圓上異于、的任意一點,直線外的點滿足, . 

(1)求點的軌跡方程;

(2)試確定點的坐標(biāo),使得的面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌汽車的店,對最近100份分期付款購車情況進(jìn)行統(tǒng)計,統(tǒng)計情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.

付款方式

分3期

分6期

分9期

分12期

頻數(shù)

20

20

(1)若以上表計算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;

(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案