已知圓C的極坐標(biāo)方程為ρ2-4ρ(sinθ+cosθ)+6=0.
(1)求圓C的普通方程;
(2)求圓C的參數(shù)方程;
(3)設(shè)P(x,y)是圓C上一點(diǎn),求x+y的最大值.
考點(diǎn):簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)把
x=ρcosθ
y=ρsinθ
代入圓C的極坐標(biāo)方程為ρ2-4ρ(sinθ+cosθ)+6=0,即可得出圓C的普通方程.
(2)由x2+y2-4y-4x+6=0,配方為(x-2)2+(y-2)2=2,令x=2+
2
cosθ
,y=2+
2
sinθ
(θ為參數(shù)).
即可得出圓C的參數(shù)方程.
(3)由(2)可得x+y=4+
2
cosθ+
2
sinθ=4+2sin(θ+
π
4
)
即可得出.
解答: 解:(1)由圓C的極坐標(biāo)方程為ρ2-4ρ(sinθ+cosθ)+6=0,
∴x2+y2-4y-4x+6=0,即為圓C的普通方程.
(2)由x2+y2-4y-4x+6=0,配方為(x-2)2+(y-2)2=2.
可得圓C的參數(shù)方程為
x=2+
2
cosθ
y=2+
2
sinθ
x=2+
2
cosθ
(θ為參數(shù)).
(3)由(2)可得x+y=4+
2
cosθ+
2
sinθ=4+2sin(θ+
π
4
)
≤6.
當(dāng)且僅當(dāng)sin(θ+
π
4
)
=1時(shí)取等號(hào).
∴x+y的最大值為6.
點(diǎn)評(píng):本題考查了極坐標(biāo)方程化為普通方程、圓的參數(shù)方程、兩角和差的正弦公式、正弦函數(shù)的單調(diào)性值域,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
x
-x
(1)判斷f(x)的奇偶性;
(2)用定義證明f(x)在(0,+∞)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試用綜合法或分析法證明:已知a>b>c,求證:
1
a-b
+
1
b-c
+
1
c-a
>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的離心率
3
2
,且過焦點(diǎn)與長軸垂直的弦長為1.
(Ⅰ)求橢圓的方程;
(Ⅱ)直線l與橢圓C相交于A,B兩點(diǎn),且|AB|=
3
2
,O為坐標(biāo)原點(diǎn),是否存在直線l,使得△OAB面積最大?如果存在,求出直線l的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5},全集U=R.
(1)若A∩B=∅,求實(shí)數(shù)a的取值范圍.
(2)若∁UB?A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+
1
x
),且f(x)在x=
1
2
處的切線方程為y=g(x)
(Ⅰ)求y=g(x)的解析式;
(Ⅱ)證明:當(dāng)x>0時(shí),恒有f(x)≥g(x);
(Ⅲ)證明:若ai>0(1≤i≤n,i,n∈N*),且
n
i=1
ai
=1,則(a1+
1
a1
)(a2+
1
a2
)…(an+
1
an
)≥(
n2+1
n
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sinxcosx-2cos2x.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-n(n∈N*
(1)求數(shù)列{an}的通項(xiàng)an的表達(dá)式.
(2)記bn=an+1,Tn=
 
1≤i≤j≤n
bibj(i,j∈N*),證明:
1
7
T1
T2
+
T1T3
T2T4
+…+
T1•T3T2n-1
T2•T4T2n
4
21
(n∈N*)(其中
 
1≤i≤j≤n
bibj表示所有的積bibj(1≤i≤j≤n)的和)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)學(xué)完導(dǎo)數(shù)知識(shí)后,對(duì)三次多項(xiàng)式函數(shù)f(x)=ax3+bx2+cx+d(x∈R,a≠0,a、b、c、d∈R)進(jìn)行了研究.在一次交流時(shí).提出了如下結(jié)果.
①若a>0時(shí),則f(x)存在單調(diào)遞增區(qū)間;若a<0時(shí),則f(x)存在單調(diào)遞減區(qū)間;
②f(x)的零點(diǎn)個(gè)數(shù)可能是1個(gè),或2個(gè),或3個(gè);
③有極值的充要條件是b2≥3ac;
④圖象上總存在不同的兩點(diǎn)A,B,在A,B兩點(diǎn)處的切線互相平行.
請(qǐng)你給予評(píng)價(jià):
(1)上述結(jié)果是正確的
 
(填上所有正確的序號(hào));
(2)上述結(jié)果若有錯(cuò)誤的,填上錯(cuò)誤的序號(hào)并更正:
 

查看答案和解析>>

同步練習(xí)冊(cè)答案