8.在圖中畫出與已知直線異面的直線:

分析 直接利用異面直線的定義畫圖即可.

解答 解:在圖中畫出與已知直線異面的直線:如圖:

點評 本題考查異面直線的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知z是復數(shù),z+2i、$\frac{z}{2-i}$均為實數(shù)(i為虛數(shù)單位),且復數(shù)(z+a•i)2在復平面內對應的點在第一象限,則實數(shù)a的取值范圍為{a|2<a<6}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知i為虛數(shù)單位,復數(shù)-i2=( 。
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=(a-1)xa(a∈R),g(x)=|lgx|.
(Ⅰ)若f(x)是冪函數(shù),求a的值并求其單調遞減區(qū)間;
(Ⅱ)關于x的方程g(x-1)+f(1)=0在區(qū)間(1,3)上有兩不同實根x1,x2(x1<x2),求a+$\frac{1}{x_1}$+$\frac{1}{x_2}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-4≤0}\\{2x-y+2≥0}\end{array}\right.$,則z=2x+y的最大值為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在平面直角坐標系xOy中,已知圓C:(x-3)2+(y-4)2=5,A、B是圓C上的兩個動點,AB=2,則$\overrightarrow{OA}$$•\overrightarrow{OB}$的取值范圍為[8-4$\sqrt{5}$,8+4$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知x>0,當x取什么值時,2x+$\frac{1}{{x}^{2}}$的值最。孔钚≈凳嵌嗌?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列說法中:
①$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,則$\overrightarrow a$∥$\overrightarrow c$;
②在△ABC中,A>B,則sinA>sinB.;
③等比數(shù)列的前三項依次是a,2a+2,3a+3,則a的值為-1或-3;
④在△ABC中,a=2$\sqrt{3}$,b=6,A=30°,則B=60°;
⑤數(shù)列{an}的通項公式an=3•22n-1,則數(shù)列{an}是以2為公比的等比數(shù)列;
⑥已知數(shù)列{an}的前n項和為Sn,a1=-2,an+1=1-$\frac{1}{a_n}$,則S25的值為-$\frac{10}{3}$.
其中結論正確是①②⑥(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=f(x)+g(x)-2在區(qū)間(0,+∞)上有最大值是6,那么h(x)在(-∞,0)上的最小值是( 。
A.-7B.-8C.-9D.-10

查看答案和解析>>

同步練習冊答案