19.下列有關(guān)命題的說法錯誤的為( 。
A.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
B.“|x|<2”是“x2-x-6<0”的充分不必要條件
C.命題“存在∈R,使得x2+x+1<0”的否定是“對任意x∈R,均有x2+x+1≥0”
D.若p∧q為假命題,則p,q均為假

分析 寫出原命題的逆否命題,可判斷A;根據(jù)充要條件的定義,可判斷B;寫出原命題的否定可判斷C;根據(jù)復(fù)合命題真假判斷的真值表,可判斷D.

解答 解:命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”,故A正確;
“|x|<2”?“-2≤x≤2“,
“x2-x-6<0”?“-2≤x≤3“,
故“|x|<2”是“x2-x-6<0”的充分不必要條件,故B正確;
命題“存在∈R,使得x2+x+1<0”的否定是“對任意x∈R,均有x2+x+1≥0”,故C正確;
p∧q為假命題,則p,q中存在假命題,但不一定均為假,故D錯誤;
故選:D

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,復(fù)合命題,充要條件,特稱命題,難度基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=x2-2ax-2alnx(a∈R),則下列說法不正確的命題個數(shù)是( 。
①當(dāng)a<0時,函數(shù)y=f(x)有零點;
②若函數(shù)y=f(x)有零點,則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點;
④若a≤1,則函數(shù)y=f(x)有唯一的零點.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=Msin(ωx+φ)(M>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a-c)cosB=bcosC,求$f(\frac{A}{2})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列四個命題:
①函數(shù)$f(x)=1-2{sin^2}\frac{x}{2}$的最小正周期為2π;
②“三個數(shù)a,b,c成等比數(shù)列”是“b=$\sqrt{ac}$”的充要條件.
③命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0,則命題“p∧(¬q)”是假命題;
④函數(shù)f(x)=x3-3x2+1在點(1,f(1))處的切線方程為3x+y-2=0.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:x2+y2+8x+12=0,若直線y=kx-2與圓C至少有一個公共點,則實數(shù)k的取值范圍為$[{-\frac{4}{3},0}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+2alnx,a∈R.
(Ⅰ)若f(x)在x=1處取得極值,求實數(shù)a的值;
(Ⅱ)若不等式f(x)>0對任意x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知某個幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是$\frac{8000}{3}$ cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\vec n=(2,0,1)$為平面α的一個法向量,點A(-1,2,1)在α內(nèi),則P(1,2,-2)到平面α的距離為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$2\sqrt{5}$D.$\frac{{\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從裝有兩個紅球和三個黑球的口袋里任取兩個球,那么互斥而不對立的兩個事件是( 。
A.“至少有一個黑球”與“都是黑球”
B.“至少有一個黑球”與“至少有一個紅球”
C.“恰好有一個黑球”與“恰好有兩個黑球”
D.“至少有一個黑球”與“都是紅球”

查看答案和解析>>

同步練習(xí)冊答案