【題目】已知函數(shù)f(x)=ln.
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)對于x∈[2,6],f(x)=ln>ln恒成立,求實數(shù)m的取值范圍.
【答案】(1) (-∞,-1)∪(1,+∞),奇函數(shù).(2) 0<m<7.
【解析】
(1)解不等式>0,即得函數(shù)的定義域.再利用奇偶函數(shù)的判定方法判斷函數(shù)的奇偶性.(2)轉(zhuǎn)化成以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.再求出函數(shù)的最小值得解.
(1)由>0,解得x<-1或x>1,
所以函數(shù)f(x)的定義域為(-∞,-1)∪(1,+∞),
當x∈(-∞,-1)∪(1,+∞)時,
f(-x)=ln=ln=ln=-ln=-f(x),
所以f(x)=ln是奇函數(shù).
(2)由于x∈[2,6]時,
f(x)=ln>ln恒成立,
所以>>0,
因為x∈[2,6],所以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.
令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],
由二次函數(shù)的性質(zhì)可知,x∈[2,3]時函數(shù)g(x)單調(diào)遞增,x∈[3,6]時函數(shù)g(x)單調(diào)遞減,
即x∈[2,6]時,g(x)min=g(6)=7,
所以0<m<7.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),命題p:函數(shù)在內(nèi)單調(diào)遞增;q:函數(shù)僅在處有極值.
(1)若命題q是真命題,求a的取值范圍;
(2)若命題是真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: (a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問卷得分不低于70分的市民稱為“動物保護關(guān)注者”,則山圖中表格可得列聯(lián)表如下:
非“動物保護關(guān)注者” | 是“動物保護關(guān)注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
(1)請判斷能否在犯錯誤的概率不超過0.05的前提下認為“動物保護關(guān)注者”與性別有關(guān)?
(2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調(diào)查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女“動物保護達人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補充完整,并判斷是否有99.5%的把握認為選擇科目與性別有關(guān)?
說明你的理由;
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,右焦點為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)如圖,過定點的直線交橢圓于不同的兩點,連接并延長交橢圓于點,設(shè)直線的斜率分別為,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性.
(2)試問是否存在,使得對恒成立?若存在,求的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的長軸和短軸為對角線的四邊形的面積為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于,兩點,設(shè)為橢圓上一動點,且滿足(為坐標原點).當時,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com