分析 (1)在△ABC中,由$cosA=-\frac{1}{4}$,可得,$sinA=\frac{{\sqrt{15}}}{4}$,根據(jù)面積公式求出bc,結(jié)合余弦定理可得a的值.
(2)和與差的公式打開(kāi),二倍角公式化簡(jiǎn)可得答案.
解答 解:(1)在△ABC中,由$cosA=-\frac{1}{4}$,可得,$sinA=\frac{{\sqrt{15}}}{4}$,
又∵${S_{△ABC}}=3\sqrt{15}$,
∴$\frac{1}{2}bcsinA=3\sqrt{15}$,即bc=24.
又b-c=5,
解得:b=8,c=3.
由余弦定理:a2=b2+c2-2bccosA=85,
即:$a=\sqrt{85}$.
(2)∵$cos2A=2{cos^2}A-1=-\frac{7}{8}$,
$sin2A=2sinAcosA=-\frac{{\sqrt{15}}}{8}$,
∴$cos({2A-\frac{π}{6}})=cos2Acos\frac{π}{6}+sin2Asin\frac{π}{6}$=$({-\frac{7}{8}})×\frac{{\sqrt{3}}}{2}+({-\frac{{\sqrt{15}}}{8}})×\frac{1}{2}=-\frac{{\sqrt{15}+7\sqrt{3}}}{16}$.
點(diǎn)評(píng) 本題考查了正弦余弦定理的運(yùn)用和化簡(jiǎn)計(jì)算能力,屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1,2,3 | B. | 2,3,4 | C. | 3,4,5 | D. | 4,5,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2-ln4}{4}$ | B. | $\frac{3-2ln4}{4}$ | C. | $\frac{1+ln4}{4}$ | D. | $\frac{1+2ln4}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com