【題目】已知 與 為互相垂直的單位向量, , 且 與 的夾角為銳角,則實(shí)數(shù)λ的取值范圍是( )
A.(﹣∞,﹣2)
B.( ,+∞)
C.(﹣2, )
D.(﹣ )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), (為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若函數(shù)的圖象與函數(shù)的圖象有兩個(gè)不同的交點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直角坐標(biāo)系中,曲線與軸負(fù)半軸交于點(diǎn),直線與相切于, 為上任意一點(diǎn), 為在上的射影, 為的中點(diǎn).
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)軌跡與軸交于,點(diǎn)為曲線上的點(diǎn),且, ,試探究三角形的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】共享單車(chē)入住泉州一周年以來(lái),因其“綠色出行,低碳環(huán)!钡睦砟疃鴤涫苋藗兊南矏(ài),值此周年之際,某機(jī)構(gòu)為了了解共享單車(chē)使用者的年齡段,使用頻率、滿(mǎn)意度等三個(gè)方面的信息,在全市范圍內(nèi)發(fā)放份調(diào)查問(wèn)卷,回收到有效問(wèn)卷份,現(xiàn)從中隨機(jī)抽取份,分別對(duì)使用者的年齡段、~歲使用者的使用頻率、~歲使用者的滿(mǎn)意度進(jìn)行匯總,得到如下三個(gè)表格:
(Ⅰ)依據(jù)上述表格完成下列三個(gè)統(tǒng)計(jì)圖形:
(Ⅱ)某城區(qū)現(xiàn)有常住人口萬(wàn),請(qǐng)用樣本估計(jì)總體的思想,試估計(jì)年齡在歲~歲之間,每月使用共享單車(chē)在~次的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin2x的圖象向左平移 個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是( )
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ) 部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及解析式;
(Ⅱ)設(shè)g(x)=f(x)﹣cos2x,求函數(shù)g(x)在區(qū)間 上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= sinx+cosx.
(1)求f(x)的最大值;
(2)設(shè)g(x)=f(x)cosx,x∈[0, ],求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx)+b(A>0,ω>0)的最大值為2,最小值為0,其圖象相鄰兩對(duì)稱(chēng)軸間的距離為2,則f(1)+f(2)+…+f(2008)= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com