如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形上連接著一個(gè)等腰直角三角形,等腰直角三角形的直角邊上再連接正方形…,如此繼續(xù).若共得到1023個(gè)正方形,設(shè)起始正方形的邊長(zhǎng)為,則最小正方形的邊長(zhǎng)為_______

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形上連接著一個(gè)等腰直角三角形,等腰直角三角形的直角邊上再連接正方形…,如此繼續(xù).若共得到1023個(gè)正方形,設(shè)起始正方形的邊長(zhǎng)為
2
2
,則最小正方形的邊長(zhǎng)為
1
32
1
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形一邊上連接著等腰直角三角形,等腰直角三角形兩直角邊再分別連接著一個(gè)正方形,如此繼續(xù)下去,共得到127個(gè)正方形.若最后得到的正方形的邊長(zhǎng)為1,則初始正方形的邊長(zhǎng)為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形一邊上連接著等腰直角三角形,等腰直角三角形兩直角邊再分別連接著一個(gè)正方形,如此繼續(xù)下去,共得到127個(gè)正方形.若最后得到的正方形的邊長(zhǎng)為1,則初始正方形的邊長(zhǎng)為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形一邊上連結(jié)著等腰直角三角形,等腰直角三角形兩直角邊再分別連結(jié)著一個(gè)正方形,如此繼續(xù)下去,共得到127個(gè)正方形.若最后得到的正方形的邊長(zhǎng)為1,則初始正方形的邊長(zhǎng)為_(kāi)____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省無(wú)錫市錫山高級(jí)中學(xué)高三(上)10月段考數(shù)學(xué)試卷(解析版) 題型:填空題

如圖所示是畢達(dá)哥拉斯的生長(zhǎng)程序:正方形上連接著一個(gè)等腰直角三角形,等腰直角三角形的直角邊上再連接正方形…,如此繼續(xù).若共得到1023個(gè)正方形,設(shè)起始正方形的邊長(zhǎng)為,則最小正方形的邊長(zhǎng)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案