設(shè)函數(shù)y=f(x)的定義域為(0,+∞),若對給定的正數(shù)K,定義fK(x)=
K  ,f(x)≤K
f(x),f(x)>K
,則當(dāng)函數(shù)f(x)=
1
x
,K=1時,
2
1
4
fK(x)dx=
 
考點:定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)fk(x)的定義求出fk(x)的表達(dá)式,然后根據(jù)積分的運算法則即可得到結(jié)論.
解答: 解:由定義可知當(dāng)k=1時,f1(x)=
1,
1
x
≤1
1
x
,
1
x
>1
,即f1(x)=
1.x≥1
1
x
,0<x<1

則定積分
2
1
4
fK(x)dx=
1
1
4
1
x
dx+
2
1
1dx=lnx|
 
1
1
4
+x|
 
2
1
=ln1-ln
1
4
+2-1=1+2ln2,
故答案為:1+2ln2.
點評:本題主要考查積分的計算,利用函數(shù)的定義求出函數(shù)的表達(dá)式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z為虛數(shù),且z+
1
z
+1=0.
(1)求z;
(2)求z+z2+z3+…+z2013的值;
(3)若復(fù)數(shù)z所對應(yīng)的點在第二象限,w∈C,且1≤|w-4z|≤2,求|w|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=(sinx+cosx)2+2cos2x.
(1)求它的遞增區(qū)間;
(2)求它的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是由正數(shù)組成的等比數(shù)列,且a5a6=81,log3a1+log3a2+…+log3a10的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2+x-6y+m=0與直線x+2y-3=0相交于P,Q兩點,O為坐標(biāo)原點,若OP⊥OQ,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R,且4≤a2+b2≤9,則a2-ab+b2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3cosx+1
cosx-2
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
i
,
j
的夾角為θ(0<θ<π),若
a
=x
i
+y
j
,如圖,則(x,y)叫做向量
a
的[θ]坐標(biāo),記作
a
=(x,y)θ,有以下命題:
①已知
a
=(2,-1)60°
,則|
a
|=
5

②若
a
=(x1,y1θ
b
=(x2,y2θ,則
a
+
b
=(x1+x2,y1+y2θ;
③若
a
=(x1,y1θ
b
=(x2,y2θ,則
a
b
=x1x2+y1y2;
④若
OB
(x2,y2θ,
OC
=(x3,y3θ,
OA
=(x1,y1θ,且A,B,C三點共線,則x3=λx1+(1-λ)x2,(λ∈R).上述命題中正確的有
 
.(將你認(rèn)為正確的都寫上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.重慶武中高2015級某學(xué)霸經(jīng)探究發(fā)現(xiàn):任何一個一元三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有“拐點”,且該“拐點”也為該函數(shù)的對稱中心.若f(x)=x3-
3
2
x2+
1
2
x+1,則f(
1
2015
)+f(
2
2015
)+…+f(
2014
2015
)
=
 

查看答案和解析>>

同步練習(xí)冊答案