14.已知兩圓的圓心距d=3,兩圓的半徑分別為方程x2-5x+3=0的兩根,則兩圓的位置關(guān)系是(  )
A.相交B.相離C.相切D.內(nèi)含

分析 根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求解.

解答 解:∵兩圓的半徑分別為方程x2-5x+3=0的兩根,
∴兩圓的半徑之和為5,半徑的差為$\sqrt{13}$,而$\sqrt{13}$>d,
∴兩圓的位置關(guān)系是內(nèi)含.
故選:D

點評 解決本題的關(guān)鍵根據(jù)根與系數(shù)關(guān)系得到兩圓半徑之和差.用到的知識點為:圓心距大于半徑之和,兩圓相離.圓心距等于半徑之和,兩圓相切.圓心距小于半徑之和,兩圓相交.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若關(guān)于x的不等式ax2+bx+c<0的解集為({-∞,-1})∪(${\frac{1}{2}$,+∞),則不等式cx2-bx+a<0的解集為( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.(-2,1)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.復(fù)數(shù)z=i(1-i)的虛部為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={a1,a2,…,am}.若集合A1∪A2∪A3∪…∪An=A,則稱A1,A2,A3,…,An為集合A的一種拆分,所有拆分的個數(shù)記為f(n,m).
(1)求f(2,1),f(2,2),f(3,2)的值;
(2)求f(n,2)(n≥2,n∈N*)關(guān)于n的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某重點高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學(xué)校就新規(guī)章制度隨機抽取部分學(xué)生進行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分數(shù)分成5組:[50,60),60,70),[70,80),[80,90),[90,100],并作出頻率分布直方圖與樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量n和頻率分布直方圖中的x、y的值;
(2)在選取的樣本中,從分數(shù)在70分以下的學(xué)生中隨機抽取2名學(xué)生進行座談會,求所抽取的2名學(xué)生中恰有一人得分在[50,60)內(nèi)的概率.
5
6
7
8
9
3  4



1  2  3  4  5  6   7  8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2C-3cos(A+B)=1.
(1)求角C的大;
(2)若c=2$\sqrt{3}$,求△ABC的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有$f[f(x)-\frac{1}{x}]=2$,則$f(\frac{1}{7})$的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若等差數(shù)列{an}的公差為2,且a5是a2與a6的等比中項,則該數(shù)列的前n項和Sn取最小值時,n的值等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知棱長都是2的直三棱柱的俯視圖是一個正三角形,則該直三棱柱的主視圖的面積不可能等于( 。
A.4B.2$\sqrt{3}$C.$\frac{19}{5}$D.3$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案