已知點A(-1,2),B(2,8),若向量
AB
=3
AC
,則點C的坐標是
 
考點:相等向量與相反向量
專題:平面向量及應用
分析:設(shè)出C的坐標,利用向量相等求出C的坐標即可.
解答: 解:設(shè)C(x,y),點A(-1,2),B(2,8),
向量
AB
=3
AC
,∴(3,6)=3(x+1,y-2),
可得
3x+3=3
3y-6=6
,所以x=0,y=4,
C(0,4).
故答案為:(0,4).
點評:本題考查向量的坐標運算,向量相等提交的應用,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知三棱錐S-ABC的所有頂點都在球O的球面上,∠ACB=
π
2
,AC=AB=1,SC為球O的直徑,且SC=2,則此棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R的部分圖象,則函數(shù)f(x)的最小正周期為
 
;函數(shù)f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=-(x2+x-c)•ex在區(qū)間[-3,2]上不單調(diào),則實數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(x,y)滿足x2-2x+y2=0,則4x+3y的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在古希臘,畢達哥拉斯學派把1,3,6,10,15,…這些數(shù)叫做三角形數(shù),因為這些數(shù)目的點可以排成一個正三角形(如圖):

則第七個三角形數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐的三視圖如圖所示,其中側(cè)視圖為直角三角形,俯視圖為等腰直角三角形,則此三棱錐的體積等于( 。
A、
2
2
3
B、
4
3
3
C、
8
3
3
D、8
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,AD=DB,F(xiàn)在線段CD上,設(shè)
AB
=
a
,
AC
=
b
AF
=x
a
+y
b
,則
1
x
+
4
y
的最小值為( 。
A、6+2
2
B、9
3
C、9
D、6+4
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,若復數(shù)(m-1)2+(m+1)i為實數(shù),則實數(shù)m的值為(  )
A、0B、1C、-1D、-1或1

查看答案和解析>>

同步練習冊答案