下列說法:①向量數(shù)學(xué)公式滿足數(shù)學(xué)公式,則數(shù)學(xué)公式可以是一個三角形的一條邊長;②△ABC中,如果數(shù)學(xué)公式,那么△ABC是等腰三角形;③△ABC中,若數(shù)學(xué)公式>0,則△ABC是銳角三角形;④△ABC中,若數(shù)學(xué)公式=0,△ABC是直角三角形.其中正確的個數(shù)是________.

3個
分析:①根據(jù)向量加法的三角形法則即可得到結(jié)論是正確的;
②根據(jù)△ABC中,,可得AB=BC,從而可知該命題是正確的;
③△ABC中,若>0,根據(jù)向量數(shù)量積的定義,可知∠B是鈍角,因此結(jié)論錯誤;
④△ABC中,若=0,根據(jù)向量數(shù)量積的定義,可知∠B是直角,可知結(jié)論正確,從而得到答案.
解答:①,根據(jù)向量加法的三角形法則,即可知則可以是一個三角形邊長;故①正確;
②△ABC中,,則AB=BC,∴△ABC是等腰三角形,故②正確;
③△ABC中,若>0,則∠B是鈍角,∴△ABC是銳角三角形;故③錯;
④△ABC中,若=0,則∠B是直角,∴△ABC是直角三角形,故④正確;
因此正確的個數(shù)是3個
故答案為:3個.
點評:本題比較綜合的考查了三角形和平面向量的相關(guān)性質(zhì),做為解析幾何的基礎(chǔ)知識點,平面向量在判斷三角形形狀,證明三角形的相關(guān)性質(zhì)方面有較廣的應(yīng)用,特別是平面向量垂直的充要條件和平面向量夾角公式,一定要引起大家足夠的重視,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:①向量
a
b
、
c
滿足
a
+
b
=
c
,則|
a
|、|
b
|、|
c
|
可以是一個三角形的一條邊長;②△ABC中,如果|
AB
|=|
BC
|
,那么△ABC是等腰三角形;③△ABC中,若
AB
BC
>0,則△ABC是銳角三角形;④△ABC中,若
AB
BC
=0,△ABC是直角三角形.其中正確的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
a
=(x1,y1),
b
=(x2,y2),定義運算⊙:
a
b
=x1y2-y1x2.已知平面向量
a
,
b
,
c
,則下列說法錯誤的是( 。
A、(
a
b
)+(
b
a
)=0
B、存在非零向量a,b同時滿足
a
b
=0且
a
b
=0
C、(
a
+
b
)⊙
c
=
a
c
+
b
c
D、|
a
b
|2=|
a
|2|
b
|2-|
a
b
|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市師大附中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

下列說法:①向量滿足,則可以是一個三角形的一條邊長;②△ABC中,如果,那么△ABC是等腰三角形;③△ABC中,若>0,則△ABC是銳角三角形;④△ABC中,若=0,△ABC是直角三角形.其中正確的個數(shù)是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法:①向量
a
b
、
c
、
滿足
a
+
b
=
c
,則|
a
|、|
b
|、|
c
|
可以是一個三角形的一條邊長;②△ABC中,如果|
AB
|=|
BC
|
,那么△ABC是等腰三角形;③△ABC中,若
AB
BC
>0,則△ABC是銳角三角形;④△ABC中,若
AB
BC
=0,△ABC是直角三角形.其中正確的個數(shù)是______.

查看答案和解析>>

同步練習(xí)冊答案