精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C的中心在原點O,焦點在x軸上,離心率為 ,左焦點到左頂點的距離為1.
(1)求橢圓C的標準方程;
(2)過點M(1,1)的直線與橢圓C相交于A,B兩點,且點M為弦AB中點,求直線AB的方程.

【答案】
(1)解:設橢圓C的方程為 =1(a>b>0),半焦距為c.

依題意e= ,

由左焦點到左頂點的距離為1,得a﹣c=1.

解得c=1,a=2.∴b2=a2﹣c2=3.

所以橢圓C的標準方程是


(2)解:設A(x1,y1),B(x2,y2),

∵點M(1,1)為弦AB中點,∴

把A(x1,y1),B(x2,y2)代入橢圓C的標準方程

得: ,∴3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,

∴6(x1﹣x2)+8(y1﹣y2)=0,

∴k= =﹣

∴直線AB的方程為y﹣1=﹣ (x﹣1),整理,得:3x+4y﹣7=0.

∴直線AB的方程為:3x+4y﹣7=0


【解析】(1)由橢圓離心率為 ,左焦點到左頂點的距離為1,列出方程組,求出a,b,由此能求出橢圓C的標準方程.(2)設A(x1 , y1),B(x2 , y2),由點M(1,1)為弦AB中點,利用點差法能求出直線AB的方程.
【考點精析】通過靈活運用橢圓的標準方程,掌握橢圓標準方程焦點在x軸:,焦點在y軸:即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】定義在R上函數f(x),且f(x)+f(﹣x)=0,當x<0時,f(x)=( x﹣8×( x﹣1
(1)求f(x)的解析式;
(2)當x∈[1,3]時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且三角形的面積為S= bccosA.
(1)求角A的大。
(2)若c=8,點D在AC邊上,且CD=2,cos∠ADB=﹣ ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x∈[0,1],則函數 的值域是(
A.
B.
C.[ , ]
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】偶函數f(x)滿足f(x﹣1)=f(x+1),且在x∈[0,1]時,f(x)=x2 , g(x)=ln|x|,則函數h(x)=f(x)﹣g(x)的零點的個數是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,DP⊥x軸,點M在DP的延長線上,且|DM|=2|DP|.當點P在圓x2+y2=1上運動時.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)過點T(0,t)作圓x2+y2=1的切線交曲線C于A,B兩點,求△AOB面積S的最大值和相應的點T的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的偶函致y=f(x),恒有f(x+4)=f(x)﹣f(﹣2)成立,且f(0)=1,當0≤x1<x2≤2時, <0,則方程f(x)﹣lg|x|=0的根的個數為(
A.12
B.10
C.6
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知實數λ>0,設函數f(x)=eλx﹣x.

(Ⅰ)當λ=1時,求函數f(x)的極值;

(Ⅱ)若對任意x∈(0,+∞),不等式f(x)≥0恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數.

1時, ,若當時, 恒成立,求的最小值;

2)若的圖像關于對稱,且時, ,求當時, 的解析式;

3時, .若對任意的,不等式恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案